Skip to main content
Log in

Understanding the Association of Tropical SST Anomalies on the ISMR During Extreme IOD Events

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The synergistic effects of the Indian Ocean Dipole (IOD) and El Nino Southern Oscillation (ENSO) have been investigated in this study over various subregions of India during 1981–2015. The IOD, is aperiodic and erratic, still this phenomenon is intrinsic in nature dependent on coupled ocean and atmospheric characteristics of the Indian ocean. About 60% of the IOD events showed its coexistence with ENSO during the 35-year recent climatology, still 40% of IOD events are independently occurring. For this analysis, the strongest three positive IOD (1994, 1997, 2006) and three negative IOD (1996, 1998, 2010) events have been identified that co-occurred with El-Nino and La-Nina events respectively. This study reveals that pIOD events are stronger and but the nIOD events are frequent and effecting Indian Summer Monsoon Rainfall (ISMR). The Sea Surface Temperature (SST) anomalies helps in explaining how strong pIOD favors moisture transport towards the western ghats, central India, northwest India, and anticyclonic conditions in the Bay of Bengal area whereas nIOD produces less rainfall in central India and the western ghats, but greater rainfall in the northeastern region. The reduced ENSO-IOD coupling in the 2000s may have strengthened the connection between ENSO and the Indian Summer Monsoon (ISMR), which had experienced a weakening in preceding decades, as reported by Kumar et al. (Science 284:2156–2159, 1999) and Ashok et al. (Geophys Res Lett 28:4499–4502, 2001). This study also investigates whether a regional climate model (RegCM4.7) accurately incorporate the realistic ENSO-IOD coupling mechanisms, and simulate its impact on regionalized precipitation during summer monsoon. The high-resolution RegCM4.7 simulations are close to the observation of rainfall during 2006, 1996 and 2010 extreme IOD events simulation that indicate RCM’s higher sensitivity towards the abrupt change in boundary condition such as SST. Overall, the monsoon core regions i.e., central India, western ghats and northeast India, both IOD and southern oscillations are the synergistic predictor for the ISMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data Availability

This study utilizes the India Meteorological Department's (IMD) daily gridded rainfall data (IMD4) with resolution of 0.25° × 0.25° over the Indian domain which is available through the ‘Data Supply Portal’ (https://dsp.imdpune.gov.in/). Additionally, the RegCM4 model's initialization and boundary conditions rely on 6-hourly data from ECMWF's ERA Interim reanalysis (1.5° × 1.5° resolution) for air temperature, geopotential height, relative humidity, zonal and meridional wind (https://www.ecmwf.int/en/forecasts/datasets/reanalysisdatasets/era-interim). Furthermore, Extended Reconstructed SST, version 3b (ERSST.v3b) and sea surface salinity (SSS) ocean reanalysis dataset, known as The Ocean ReAnalysis System 5 (ORAS5) provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) https://www.ecmwf.int/en/forecasts/datasets.

References

  • Abram, N. J., Wright, N. M., Ellis, B., Dixon, B. C., Wurtzel, J. B., England, M. H., Ummenhofer, C. C., Philibosian, B., Cahyarini, S. Y., Yu, T. L., & Shen, C. C. (2020). Coupling of Indo-Pacific climate variability over the last millennium. Nature, 579(7799), 385–392.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Allan, R., et al. (2001). Is there an Indian Ocean dipole, and is it independent of the El Niño-Southern Oscillation? CLIVAR Exchanges, 6, 18–22.

    Google Scholar 

  • Anil, N., Ramesh Kumar, M. R., Sajeev, R., & Saji, P. K. (2016). Role of distinct flavours of IOD events on Indian summer monsoon. Natural Hazards, 82, 1317–1326.

    Article  Google Scholar 

  • Annamalai, H. (2010). Moist dynamical linkage between the equatorial Indian Ocean and the South Asian monsoon trough. Journal of the Atmospheric Sciences, 67(3), 589–610. https://doi.org/10.1175/2009JAS2991.1

    Article  ADS  Google Scholar 

  • Ashok, K., Guan, Z., & Yamagata, T. (2003). A look at the relationship between the ENSO and the Indian Ocean dipole. Journal of the Meteorological Society of Japan Series II, 81(1), 41–56.

    Article  ADS  Google Scholar 

  • Ashok, K., Guan, Z., Saji, N. H., & Yamagata, T. (2004). Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. Journal of Climate, 17(16), 3141–3155. https://doi.org/10.1175/1520-0442(2004)017%3c3141:IACIOE%3e2.0.CO;2

    Article  ADS  Google Scholar 

  • Ashok, K., Guan, Z., & Yamagata, T. (2001). Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophysical Research Letters, 28(23), 4499–4502.

    Article  ADS  Google Scholar 

  • Ashok, K., & Saji, N. H. (2007). On the impacts of ENSO and Indian Ocean dipole events on sub-regional Indian summer monsoon rainfall. Natural Hazards, 42(2), 273–285.

    Article  Google Scholar 

  • Baquero-Bernal, A., Latif, M., & Legutke, S. (2002). On dipole like variability of sea surface temperature in the tropical Indian Ocean. Journal of Climate, 15(11), 1358–1368.

    Article  ADS  Google Scholar 

  • Behera, S. K., Luo, J. J., Masson, S., Rao, S. A., Sakuma, H., & Yamagata, T. (2006). A CGCM study on the interaction between IOD and ENSO. Journal of Climate, 19(9), 1688–1705.

    Article  ADS  Google Scholar 

  • Bhatla, R., Bhattacharya, S., Verma, S., Mall, R. K., & Singh, R. S. (2023). El Nino/La Nina and IOD impact on Kharif season crops over western agro-climatic zones of India. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-023-04361-z

    Article  Google Scholar 

  • Bhatla, R., Mandal, B., Verma, S., Ghosh, S., & Mall, R. K. (2019). Performance of regional climate model in simulating monsoon onset over Indian subcontinent. Pure and Applied Geophysics (PAGEOPH), 176(1), 409–420. https://doi.org/10.1007/s00024-018-1910-1

    Article  ADS  Google Scholar 

  • Bhatla, R., Varma, P., Shruti, V., & Ghosh, S. (2020). El Nino/La Nina impact on crop production over different agro-climatic zones of indo-Gangetic plain of India. Theoretical and Applied Climatology, 142, 151–163. https://doi.org/10.1007/s00704-020-03284-3

    Article  ADS  Google Scholar 

  • Cai, W., Wang, G., Gan, B., Wu, L., Santoso, A., Lin, X., Chen, Z., Jia, F., & Yamagata, T. (2018). Stabilised frequency of extreme positive Indian Ocean dipole under 1.5 °C warming. Nature Communications, 9(1), 1–8.

    Article  Google Scholar 

  • Chattopadhyay, J., & Bhatla, R. (1996). A reexamination ENSO/anti ENSO events and simultaneous performance of the Indian summer monsoon. Mausam, 47(1), 59–66.

    Article  Google Scholar 

  • Dommenget, D., & Flöter, J. (2011). Conceptual understanding of climate change with a globally resolved energy balance model. Climate Dynamics, 37(11), 2143–2165.

    Article  ADS  Google Scholar 

  • Du, Y., & Xie, S. P. (2008). Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophysical Research Letters. https://doi.org/10.1029/2008GL033631

    Article  Google Scholar 

  • Du, Y., Zhang, Y., Zhang, L. Y., Tozuka, T., Ng, B., & Cai, W. (2020). Thermocline warming induced extreme Indian Ocean dipole in 2019. Geophysical Research Letters, 47(18), e2020GL090079.

    Article  ADS  Google Scholar 

  • Fischer, A. S., Terray, P., Guilyardi, E., Gualdi, S., & Delecluse, P. (2005). Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. Journal of Climate, 18(17), 3428–3449. https://doi.org/10.1175/JCLI3478.1

    Article  ADS  Google Scholar 

  • Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X., Elguindi, N., Diro, G. T., Nair, V., Giuliani, G., & Turuncoglu, U. U. (2012). RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Research, 52, 7–29. https://doi.org/10.3354/cr01018

    Article  ADS  Google Scholar 

  • Guan, Z., Ashok, K., & Yamagata, T. (2003). Summertime response of the tropical atmosphere to the Indian Ocean dipole sea surface temperature anomalies. Journal of the Meteorological Society of Japan Series II, 81(3), 533–561.

    Article  ADS  Google Scholar 

  • Guan, Z., & Yamagata, T. (2003). The unusual summer of 1994 in East Asia: IOD teleconnections. Geophysical Research Letters. https://doi.org/10.1029/2002GL016831

    Article  Google Scholar 

  • Holtslag, A. A. M., De Bruijn, E. I. F., & Pan, H. L. (1990). A high resolution air mass transformation model for short-range weather forecasting. Monthly Weather Review, 118(8), 1561–1575. https://doi.org/10.1175/1520-0493(1990)118%3c1561:AHRAMT%3e2.0.CO;2

    Article  ADS  Google Scholar 

  • Hrudya, P. H., Varikoden, H., Vishnu, R., & Kuttippurath, J. (2020). Changes in ENSO-monsoon relations from early to recent decades during onset, peak and withdrawal phases of Indian summer monsoon. Climate Dynamics, 55(5), 1457–1471.

    Article  ADS  Google Scholar 

  • Huang, B., & Kinter, J. L., III. (2002). Interannual variability in the tropical Indian Ocean. Journal of Geophysical Research: Oceans, 107(C11), 20–21.

    Article  Google Scholar 

  • Kido, S., Tozuka, T., & Han, W. (2019). Anatomy of salinity anomalies associated with the positive Indian Ocean Dipole. Journal of Geophysical Research: Oceans, 124(11), 8116–8139.

    Article  ADS  Google Scholar 

  • Kinter, J. L., Miyakoda, K., & Yang, S. (2002). Recent change in the connection from the Asian monsoon to ENSO. Journal of Climate, 15(10), 1203–1215.

    Article  ADS  Google Scholar 

  • Krishnan, R., Sundaram, S., Swapna, P., Kumar, V., Ayantika, D. C., & Mujumdar, M. (2011). The crucial role of ocean–atmosphere coupling on the Indian monsoon anomalous response during dipole events. Climate Dynamics, 37(1), 1–17.

    Article  ADS  Google Scholar 

  • Krishnaswamy, J., Vaidyanathan, S., Rajagopalan, B., Bonell, M., Sankaran, M., Bhalla, R. S., & Badiger, S. (2015). Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events. Climate Dynamics, 45(1), 175–184.

    Article  ADS  Google Scholar 

  • Kumar, K. K., Rajagopalan, B., & Cane, M. A. (1999). On the weakening relationship between the Indian monsoon and ENSO. Science, 284(5423), 2156–2159.

    Article  CAS  PubMed  Google Scholar 

  • Lau, N. C., & Nath, M. J. (2004). Coupled GCM simulation of atmosphere–ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. Journal of Climate, 17(2), 245–265. https://doi.org/10.1175/1520-0442(2004)017%3c0245:CGSOAV%3e2.0.CO;2

    Article  ADS  Google Scholar 

  • Li, T., Wang, B., Chang, C. P., & Zhang, Y. (2003). A theory for the Indian ocean dipole-zonal mode. Journal of Atmospheric Science, 60(17), 2119–2135.

    Article  ADS  Google Scholar 

  • Li, Z., Lin, X., & Cai, W. (2017). Realism of modelled Indian summer monsoon correlation with the tropical Indo-Pacific affects projected monsoon changes. Scientific Reports, 7(1), 1–7.

    ADS  Google Scholar 

  • Lu, B., & Ren, H. L. (2020). What caused the extreme Indian Ocean dipole event in 2019? Geophysical Research Letters, 47(11), e2020GL087768.

    Article  ADS  Google Scholar 

  • Meehl, G. A., Arblaster, J. M., & Loschnigg, J. (2003). Coupled ocean–atmosphere dynamical processes in the tropical Indian and Pacific Oceans and the TBO. Journal of Climate, 16(13), 2138–2158.

    Article  ADS  Google Scholar 

  • Pillai, P. A., & Annamalai, H. (2012). Moist dynamics of severe monsoons over South Asia: Role of the tropical SST. Journal of the Atmospheric Sciences, 69(1), 97–115. https://doi.org/10.1175/JAS-D-11-056.1

    Article  ADS  Google Scholar 

  • Reed, E. V., Cole, J. E., Lough, J. M., Thompson, D., & Cantin, N. E. (2019). Linking climate variability and growth in coral skeletal records from the Great Barrier Reef. Coral Reefs, 38(1), 29–43.

    Article  ADS  Google Scholar 

  • Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401(6751), 360–363.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Saji, N. H., & Yamagata, T. (2003). Possible impacts of Indian Ocean dipole mode events on global climate. Climate Research, 25(2), 151–169. https://doi.org/10.3354/cr025151

    Article  ADS  Google Scholar 

  • Sikka, D. R., & Ratna, S. (2011). On improving the ability of a high-resolution atmospheric general circulation model for dynamical seasonal prediction of the extreme seasons of the Indian summer monsoon. Mausam, 62(3), 339–360.

    Article  Google Scholar 

  • Solomon, S., Manning, M., Marquis, M. and Qin, D. (2007). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge university press.

  • Thompson, B., Gnanaseelan, C., Parekh, A., & Salvekar, P. S. (2009). A model study on oceanic processes during the Indian Ocean Dipole termination. Meteorology and Atmospheric Physics, 105(1), 17–27. https://doi.org/10.1007/s00703-009-0033-8

    Article  ADS  Google Scholar 

  • Ueda, H. (2005). Air-sea coupled process involved in stepwise seasonal evolution of the Asian summer monsoon. Geographical Review of Japan, 78(12), 825–841.

    Article  Google Scholar 

  • Vecchi, G. A., & Soden, B. J. (2007). Global warming and the weakening of the tropical circulation. Journal of Climate, 20(17), 4316–4340. https://doi.org/10.1175/JCLI4258.1

    Article  ADS  Google Scholar 

  • Verma, S., & Bhatla, R. (2021). Performance of RegCM4 for dynamically downscaling of El Nina/La Nina events during Southwest Monsoon over India and its regions. Earth and Space Science, 8(3), 1–18. https://doi.org/10.1029/2020EA001474

    Article  CAS  Google Scholar 

  • Vinayachandran, P. N., & Nanjundiah, R. S. (2009). Indian Ocean sea surface salinity variations in a coupled model. Climate Dynamics, 33, 245–263.

    Article  ADS  Google Scholar 

  • Wang, H., Kumar, A., Murtugudde, R., Narapusetty, B., & Seip, K. L. (2019). Covariations between the Indian Ocean dipole and ENSO: A modeling study. Climate Dynamics, 53(9), 5743–5761.

    Article  ADS  Google Scholar 

  • Webster, P. J., Moore, A. M., Loschnigg, J. P., & Leben, R. R. (1999). Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401(6751), 356–360.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Wieners, C. E., de Ruijter, W. P., Ridderinkhof, W., von der Heydt, A. S., & Dijkstra, H. A. (2016). Coherent tropical Indo-Pacific interannual climate variability. Journal of Climate, 29(11), 4269–4291. https://doi.org/10.1175/JCLI-D-15-0262.1

    Article  ADS  Google Scholar 

  • Xie, S. P., Annamalai, H., Schott, F. A., & McCreary, J. P., Jr. (2002). Structure and mechanisms of South Indian Ocean climate variability. Journal of Climate, 15(8), 864–878. https://doi.org/10.1175/1520-0442(2002)015%3c0864:SAMOSI%3e2.0.CO;2

    Article  ADS  Google Scholar 

  • Yamagata, T., Behera, S. K., Luo, J. J., Masson, S., Jury, M. R., & Rao, S. A. (2004). Coupled ocean-atmosphere variability in the tropical Indian Ocean. Earth’s Climate: the Ocean-Atmosphere Interaction Geophysical Monograph, 147, 189–212.

    ADS  Google Scholar 

  • Yuhong, Z., Yan, D., Shaojun, Z., Yali, Y., & Xuhua, C. (2013). Impact of Indian Ocean Dipole on the salinity budget in the equatorial Indian Ocean. Journal of Geophysical Research: Oceans, 118(10), 4911–4923.

    Article  ADS  Google Scholar 

  • Zhao, S., Jin, F. F., & Stuecker, M. F. (2019). Improved predictability of the Indian Ocean Dipole using seasonally modulated ENSO forcing forecasts. Geophysical Research Letters, 46(16), 9980–9990.

    Article  ADS  Google Scholar 

  • Zheng, X. T., Xie, S. P., Du, Y., Liu, L., Huang, G., & Liu, Q. (2013). Indian Ocean dipole response to global warming in the CMIP5 multimodel ensemble. Journal of Climate, 26(16), 6067–6080.

    Article  ADS  Google Scholar 

  • Zheng, X. T., Xie, S. P., Vecchi, G. A., Liu, Q., & Hafner, J. (2010). Indian Ocean dipole response to global warming: Analysis of ocean–atmospheric feedbacks in a coupled model. Journal of Climate, 23(5), 1240–1253. https://doi.org/10.1175/2009JCLI3326.1

    Article  ADS  Google Scholar 

  • Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., & Mayer, M. (2019). The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment. Ocean Science, 15(3), 779–808.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Thanks to the India Meteorology Department (IMD) for providing the necessary datasets gridded rainfall datasets. Special thanks to International Center for Theoretical Physics (ICTP), Italy for providing RegCM4. The authors also acknowledge Institute of Eminence (IoE) Grant (Scheme No. 6031), BHU for providing funds.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SV, RB developed and designed the research. SV and PKS further developed the research and data analysis. SV and PKS wrote the manuscript which was subsequently modified and supervised by RB and PKS.

Corresponding author

Correspondence to R. Bhatla.

Ethics declarations

Conflict of Interest

The authors  declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Bhatla, R. & Singh, P.K. Understanding the Association of Tropical SST Anomalies on the ISMR During Extreme IOD Events. Pure Appl. Geophys. 181, 373–389 (2024). https://doi.org/10.1007/s00024-023-03394-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03394-9

Keywords

Navigation