Skip to main content
Log in

Seismic Hazard Assessment of Kashmir Region Using Logic Tree Approach: Focus on Sensitivity of PSHA Results Towards Declustering Procedures and GMPEs

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Probabilistic seismic hazard assessment (PSHA) for the Kashmir region located in the northwestern Himalayas has been performed to quantitatively estimate the probability of exceedance of various ground-shaking levels. An updated earthquake catalog composed of 7826 events was prepared by combining historical events (from 1250 BC) and instrumental events (1900–2020). Kijko's maximum likelihood technique yielded seismicity parameter b-value 0.92–1.05 and mmax ~ 7.98 for the entire Kashmir region. A comparison of three seismicity delustering methods has been presented based on the resulting seismicity parameters. PSHA computations were conducted using RCRISIS software based on a logic tree approach to account for the model uncertainties in attenuation models and epistemic uncertainties due to declustering methods. Seismic hazard maps at bedrock for four return periods of 475, 950, 2475, and 4950 years were prepared using peak ground accelerations (PGA) as well as short- (0.2 s) and long-period (1 s) spectral accelerations (Sa). Sensitivity analysis of the computed hazard revealed the substantial effect of attenuation relationships as well as declustering methods on the outcomes. Furthermore, hazard curves and uniform hazard response spectra at each of the 1228 grid points were developed. The southwestern, northwestern, and northern regions of the valley including Pulwama, Shopian, Kulgam, and Budgam were found to have the highest hazard as opposed to the central regions like Ganderbal and parts of Baramula. Kashmir region was divided into five zones (ZA-ZE) of high to low seismicity with mean PGA values of 0.175, 0.258, 0.379, 0.456, and 0.514 g, respectively, for the 2475-year return period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahmad, B., Ahmad, S., Alam, A., Wang, S., & Sultan Bhat, M. S. (2015). Looking for missing links in Kashmir: An update on nineteenth-century seismicity. Seismological Research Letters, 86(4), 1219–1224. https://doi.org/10.1785/0220140105

    Article  Google Scholar 

  • Ahmad, B., Alam, A., Bhat, M. S., Ahmad, S., Shafi, M., & Rasool, R. (2017a). Seismic risk reduction through indigenous architecture in Kashmir Valley. International Journal of Disaster Risk Reduction, 21, 110–117. https://doi.org/10.1016/j.ijdrr.2016.11.005

    Article  Google Scholar 

  • Ahmad, B., Bhat, M. I., & Bali, B. S. (2009). Historical record of Earthquakes in the Kashmir Valley. Himalayan Geology, 30(1), 75–84.

    Google Scholar 

  • Ahmad, B., & Shafi, M. (2014). Some more earthquakes from medieval Kashmir. Journal of Seismology, 18(3), 681–686. https://doi.org/10.1007/s10950-014-9427-2

    Article  Google Scholar 

  • Ahmad, S., Bhat, M. I., Bhat, M. S., Alam, A., Ahmad, B., Rasool, A., Ahmad, H. F., Ali, U., & Afzal, A. (2017b). Geomorphic indicators of Balapur Fault in Kashmir Basin and kinematic analysis with respect to NW Himalaya. Journal of Himalayan Ecolology and Sustainable Development, 12, 72–88.

    Google Scholar 

  • Alam, A., Ahmad, S., Bhat, M. S., & Ahmad, B. (2015). Tectonic evolution of Kashmir basin in northwest Himalayas. Geomorphology, 239, 114–126. https://doi.org/10.1016/j.geomorph.2015.03.025

    Article  Google Scholar 

  • Al-Arifi, N. S., Fat-Helbary, R. E., Khalil, A. R., & Lashin, A. A. (2013). A new evaluation of seismic hazard for the northwestern part of Saudi Arabia. Natural Hazards, 69(3), 1435–1457. https://doi.org/10.1007/s11069-013-0756-1

    Article  Google Scholar 

  • Aldama-Bustos, G., Tromans, I. J., Strasser, F., Garrard, G., Green, G., Rivers, L., Douglas, J., Musson, R. M. W., Hunt, S., Lessi-Cheimariou, A., Daví, M., & Robertson, C. (2019). A streamlined approach for the seismic hazard assessment of a new nuclear power plant in the UK. Bulletin of Earthquake Engineering, 17(1), 37–54. https://doi.org/10.1007/s10518-018-0442-5

    Article  Google Scholar 

  • Ansari, A., Zahoor, F., Rao, K. S., & Jain, A. K. (2022). Deterministic approach for seismic hazard assessment of Jammu region, Jammu and Kashmir. In Geo-Congress, 2022, 590–598. https://doi.org/10.1061/9780784484043.057

    Article  Google Scholar 

  • Atkinson, G. M., & Goda, K. (2011). Effects of seismicity models and new ground-motion prediction equations on seismic hazard assessment for four Canadian cities. Bulletin of the Seismological Society of America, 101(1), 176–189. https://doi.org/10.1785/0120100093

    Article  Google Scholar 

  • Baker, J. W. (2015). Introduction to probabilistic seismic hazard analysis. White Paper Version, 2, 1.

    Google Scholar 

  • Barani, S., Spallarossa, D., & Bazzurro, P. (2009). Disaggregation of probabilistic ground-motion hazard in Italy. Bulletin of the Seismological Society of America, 99(5), 2638–2661. https://doi.org/10.1785/0120080348

    Article  Google Scholar 

  • Bazzurro, P., & Allin Cornell, C. (1999). Disaggregation of seismic hazard. Bulletin of the Seismological Society of America, 89(2), 501–520. https://doi.org/10.1785/BSSA0890020501

    Article  Google Scholar 

  • Bettinelli, P., Avouac, J. P., Flouzat, M., Jouanne, F., Bollinger, L., Willis, P., & Chitrakar, G. R. (2006). Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. Journal of Geodesy, 80(8–11), 567–589. https://doi.org/10.1007/s00190-006-0030-3

    Article  Google Scholar 

  • Bhatia, S. C., Kumar, M. R., & Gupta, H. K. (1999). A probabilistic seismic hazard map of India and adjoining regions.

  • Bilham, R., & Bali, B. S. (2014). A ninth century earthquake-induced landslide and flood in the Kashmir Valley, and earthquake damage to Kashmir’s Medieval temples. Bulletin of Earthquake Engineering, 12(1), 79–109. https://doi.org/10.1007/s10518-013-9504-x

    Article  Google Scholar 

  • Bommer, J. J. (2003). Uncertainty about the uncertainty in seismic hazard analysis. Engineering Geology, 70(1–2), 165–168. https://doi.org/10.1016/S0013-7952(02)00278-8

    Article  Google Scholar 

  • Bommer, J. J., Douglas, J., Scherbaum, F., Cotton, F., Bungum, H., & Fäh, D. (2010). On the selection of ground-motion prediction equations for seismic hazard analysis. Seismological Research Letters, 81(5), 783–793. https://doi.org/10.1785/gssrl.81.5.783

    Article  Google Scholar 

  • Burtman, V. S., & Molnar, P. (1993). Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. Geological Society of America special papers. Geological Society of America Special Papers, 281(76), 1–76. https://doi.org/10.1130/SPE281-p1

  • Chandra, R., Dar, J. A., Romshoo, S. A., Rashid, I., Parvez, I. A., Mir, S. A., & Fayaz, M. (2018). Seismic hazard and probability assessment of Kashmir valley, northwest Himalaya. India. Natural Hazards, 93(3), 1451–1477. https://doi.org/10.1007/s11069-018-3362-4

    Article  Google Scholar 

  • Chevalier, M. L., Ryerson, F. J., Tapponnier, P., Finkel, R. C., Van Der Woerd, J., Haibing, L., & Qing, L. (2005). Slip-rate measurements on the Karakorum fault may imply secular variations in fault motion. Science, 307(5708), 411–414. https://doi.org/10.1126/science.1105466. PubMed: 15662010.

    Article  Google Scholar 

  • Christophersen, A., Gerstenberger, M. C., Rhoades, D. A., & Stirling, M. W. (2011). Quantifying the effect of declustering on probabilistic seismic hazard. In Proceedings of the of the Ninth Pacific Conference on Earthquake Engineering: Building an Earthquake-Resilient Society.

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606. https://doi.org/10.1785/BSSA0580051583

    Article  Google Scholar 

  • Cotton, F., Scherbaum, F., Bommer, J. J., & Bungum, H. (2006). Criteria for selecting and adjusting ground-motion models for specific target applications: Applications to Central Europe and rock sites. Journal of Seismology, 10(2), 137–156. https://doi.org/10.1007/s10950-005-9006-7

    Article  Google Scholar 

  • Danciu, L., & Woessner, J. (2014). Pseudo probabilistic seismic hazard sources for Vrancea deep seismicity. In Proceedings of the 2. Second europa conference on earthquake engineering and engineering seismology ECEES, August 24–29, Turkey, 2014.

  • Danciu, L., Kale, Ö., & Akkar, S. (2016). The 2014 earthquake model of middle east region: Ground motion model and uncertainties. Bulletin of Earthquake Engineering, 16, 3497–3533.

    Article  Google Scholar 

  • Dar, J. A., & Dubey, R. K. (2015). Probabilistic seismic hazard analyses (PSHA) and liquefaction susceptibility evaluation of Kashmir Valley, India. Proceedings of the National Academy of Sciences, India Section A, 85(1), 177–186. https://doi.org/10.1007/s40010-014-0180-2

    Article  Google Scholar 

  • Deniz, A., & Yucemen, M. S. (2010). Magnitude conversion problem for the Turkish earthquake data. Natural Hazards, 55(2), 333–352. https://doi.org/10.1007/s11069-010-9531-8

    Article  Google Scholar 

  • Eroglu Azak, T., Kalafat, D., Şeşetyan, K., & Demircioğlu, M. B. (2018). Effects of seismic declustering on seismic hazard assessment: A sensitivity study using the Turkish earthquake catalogue. Bulletin of Earthquake Engineering, 16(8), 3339–3366. https://doi.org/10.1007/s10518-017-0174-y

    Article  Google Scholar 

  • Gabor, L. (2010). Seismic design principles whole building design guide. National institute of building sciences. Retrieved March 15, 2011.

  • Galina, N. A., Bykova, V. V., Vakarchuk, R. N., & Tatevosian, R. E. (2019). Effect of earthquake catalog declustering on seismic hazard assessment. Seismic Instruments, 55(1), 59–69. https://doi.org/10.3103/S0747923919010079

    Article  Google Scholar 

  • Ganju, J. L., & Khar, B. M. (1984). Tectonic and hydrocarbon prospecting of Kashmir Valley, Exploration tasks. Pet Asia, 207–201.

  • Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(5), 1363–1367. https://doi.org/10.1785/BSSA0640051363

    Article  Google Scholar 

  • Gavillot, Y. G., Meigs, A., Yule, D., Heermance, R., Rittenour, T., Madugo, C., & Malik, M. (2016). Shortening rate and Holocene surface rupture on the Riasi fault system in the Kashmir Himalaya: Active thrusting within the Northwest Himalayan orogenic wedge. Geological Society of America Bulletin, 128(7–8), 1070–1094. https://doi.org/10.1130/B31281.1

    Article  Google Scholar 

  • Gregori, S. D., & Christiansen, R. (2018). Seismic hazard analysis for central-western Argentina. Geodesy and Geodynamics, 9(1), 25–33. https://doi.org/10.1016/j.geog.2017.07.006

    Article  Google Scholar 

  • Gruenthal, G. (1985). The updated earthquake catalogue for the German Democratic Republic and adjacent areas – Statistical data characteristics and conclusions for hazard assessment. 3rd International Symposium on the Analysis of Seismicity and Seismic Risk, June 17–22. Liblice.

  • Gutenberg, B., & Richter, C. F. (1954). Seismicity of the earth and associated phenomena. Princeton University Press.

    Google Scholar 

  • Hashash, Y. M. A., Kim, B., Olson, S. M., & Ahmad, I. (2012). Seismic hazard analysis using discrete faults in Northwestern Pakistan: Part II, 2012. -. (2012). Seismic Hazard Analysis Using Discrete Faults in Northwestern Pakistan: Part II – Results of seismic hazard analysis. Journal of Earthquake Engineering, 16(8), 1161–1183. https://doi.org/10.1080/13632469.2012.681424

  • Hough, S., Bilham, R., & Bhat, I. (2009). Kashmir valley megaearthquakes. American Scientist, 97(1), 42–49. https://doi.org/10.1511/2009.76.42

    Article  Google Scholar 

  • Houlié, N., & Phillips, R. J. (2013). Quaternary rupture behavior of the Karakoram Fault and its relation to the dynamics of the continental lithosphere, NW Himalaya–western Tibet. Tectonophysics, 599, 1–7. https://doi.org/10.1016/j.tecto.2013.03.029

    Article  Google Scholar 

  • Hussain, A., & Yeats, R. S. (2006). The Balakot–bagh fault that triggered the October 8, earthquake and other active faults in the Himalayan foreland region. Pakistan extended abstract. international Conference on 8 October, 2005 earthquake in Pakistan: Its implications and hazard mitigation. Islamabad (pp. 125–126). Geological Survey of Pakistan.

  • Hussain, A., Yeats, R. S., & Lisa, M. (2009). Geological setting of the 8th October 2005 Kashmir earthquake. Journal of Seismology, 13, 315–325.

    Article  Google Scholar 

  • Idriss, I. M. (2008). An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra, 24(1), 217–242. https://doi.org/10.1193/1.2924362

    Article  Google Scholar 

  • International Code Council. (2000). International. Dearborn Trade Publishing.

    Google Scholar 

  • Ischuk, A., Bjerrum, L. W., Kamchybekov, M., Abdrakhmatov, K., & Lindholm, C. (2018). Probabilistic seismic hazard assessment for the area of Kyrgyzstan, Tajikistan, and Eastern Uzbekistan, Central Asia. Bulletin of the Seismological Society of America, 108(1), 130–144. https://doi.org/10.1785/0120160330

    Article  Google Scholar 

  • IS1893 (20162) Indian standard criteria for earthquake resistant design of structures, Part 1-general provisions and buildings. New Delhi: Bureau of Indian Standards.

  • Iyengar, R. N., Sharma, D., & Siddiqui, J. M. (1999). Earthquake history of India in medieval times. Indian Journal of History of Science, 34(3).

  • Jain. (2003). Review of Indian seismic code, IS 1893 (Part 1):2002. Indian Concrete Journal, 77(11), 1414–1422

  • Jayangondaperumal, R., & Thakur, V. C. (2008). Co-seismic secondary surface fractures on southeastward extension of the rupture zone of the 2005 Kashmir earthquake. Tectonophysics, 446(1–4), 61–76. https://doi.org/10.1016/j.tecto.2007.10.006

    Article  Google Scholar 

  • Jones, E. A. (1885). Records of the Geological Survey of India. XVII, I(4), 221–227.

    Google Scholar 

  • Joshi, M., & Thakur, V. C. (2016). Signatures of 1905 Kangra and 1555 Kashmir earthquakes in medieval period temples of Chamba region, northwest Himalaya. Seismological Research Letters, 87(5), 1150–1160. https://doi.org/10.1785/0220160033

    Article  Google Scholar 

  • Kadiri, A. U., & Kijko, A. (2021). Seismicity and seismic hazard assessment in West Africa. Journal of African Earth Sciences, 183. https://doi.org/10.1016/j.jafrearsci.2021.104305, PubMed: 104305

  • Kaila, K. L., Krishna, V. G., Roychowdhry, K., & Norin, M. (1978). Structure of the Kashmir Himalayas from deep seismic sounding. Journal of the Geological Society of India, 19, 1–20.

    Google Scholar 

  • Karan, P. P. (1966). Geographic regions of the Himalaya. Bulletin of Tibetology, 3, 5–25.

    Google Scholar 

  • Karimiparidari, S., Zaré, M., Memarian, H., & Kijko, A. (2013). Iranian earthquakes, a uniform catalog with moment magnitudes. Journal of Seismology, 17(3), 897–911. https://doi.org/10.1007/s10950-013-9360-9

    Article  Google Scholar 

  • (1992). Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bulletin of the Seismological Society of America, 82(1), 120–134.

  • Khattri, K. N., Rogers, A. M., Perkins, D. M., & Algermissen, S. T. (1984). A seismic hazard map of India and adjacent areas. Tectonophysics, 108(1–2), 93–134. https://doi.org/10.1016/0040-1951(84)90156-2

    Article  Google Scholar 

  • Kijko, A., & Sellevoll, M. A. (1989). Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bulletin of the Seismological Society of America, 79(3), 645–654. https://doi.org/10.1785/BSSA0790030645

  • Kijko, A., Smit, A., & Sellevoll, M. A. (2016). Estimation of earthquake hazard parameters from incomplete data files. Part III. Incorporation of uncertainty of earthquake-occurrence model. Bulletin of the Seismological Society of America, 106(3), 1210–1222. https://doi.org/10.1785/0120150252

  • Kramer, S. L. (1996). Geotechnical earthquake engineering. Pearson Education.

  • Lin, P.-S., & Lee, C.-T. (2008). Ground-motion attenuation relationships for subduction zone earthquakes in northeastern Taiwan. Bulletin of the Seismological Society of America, 98(1), 220–240. https://doi.org/10.1785/0120060002

    Article  Google Scholar 

  • Madden, C., Trench, D., Meigs, A., Ahmad, S., Bhat, M. I., & Yule, J. D. (2010). Late Quaternary shortening and earthquake chronology of an active fault in the Kashmir Basin, northwest Himalaya. Seismological Research Letters, 81(2), 346.

    Google Scholar 

  • Mahajan, A. K., Thakur, V. C., Sharma, M. L., & Chauhan, M. (2010). Probabilistic seismic hazard map of NW Himalaya and its adjoining area. India. Natural Hazards, 53(3), 443–457. https://doi.org/10.1007/s11069-009-9439-3

    Article  Google Scholar 

  • McGuire, R. K. (2004). Seismic hazard and risk analysis. Earthquake Engineering Research Institute, EERI Monograph MNO-10.

  • Mignan, A., & Woessner, J. (2012). Estimating the Magnitude of Completeness for Earthquake Catalogs, Community Online Resource for Statistical Seismicity Analysis. http://www.corssa.org. https://doi.org/10.5078/corssa-00180805

  • Mitronovas, W., & Isacks, B. L. (1971). Seismic velocity anomalies in the upper mantle beneath the Tonga-Kermadec island arc. Journal of Geophysical Research, 76(29), 7154–7180. https://doi.org/10.1029/JB076i029p07154

    Article  Google Scholar 

  • Mizrahi, L., Nandan, S., & Wiemer, S. (2021). The effect of declustering on the size distribution of mainshocks. Seismological Research Letters, 92(4), 2333–2342. https://doi.org/10.1785/0220200231

    Article  Google Scholar 

  • Moklesur Rahman, M. M., & Bai, L. (2018). Probabilistic seismic hazard assessment of Nepal using multiple seismic source models. Earth and Planetary Physics, 2(4), 327–341. https://doi.org/10.26464/epp2018030

  • Molnar, P., & Bendick, R. (2019). Seismic moments of intermediate-depth earthquakes beneath the Hindu Kush: Active stretching of a blob of sinking thickened mantle lithosphere? Tectonics, 38(5), 1651–1665. https://doi.org/10.1029/2018TC005336

    Article  Google Scholar 

  • Montalva, G. A., Bastías, N., & Rodriguez-Marek, A. (2017). Ground-motion prediction equation for the Chilean subduction zone. Bulletin of the Seismological Society of America, 107(2), 901–911. https://doi.org/10.1785/0120160221

    Article  Google Scholar 

  • Morikawa, N., Senna, S., Hayakawa, Y., & Fujiwara, H. (2011). Shaking maps for scenario earthquakes by applying the upgraded version of the strong ground motion prediction method “recipe.” Pure and Applied Geophysics, 168(3–4), 645–657. https://doi.org/10.1007/s00024-010-0147-4

    Article  Google Scholar 

  • Nábělek, J., Hetényi, G., Vergne, J., Sapkota, S., Kafle, B., Jiang, M., Su, H., Chen, J., Huang, B. S., & Hi-CLIMB Team. (2009). Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325(5946), 1371–1374. https://doi.org/10.1126/science.1167719, PubMed: 19745147

  • NDMA. (2011). Development of probabilistic seismic hazard map of India. Technical Report of the working Committee of Experts (WCE). National Disaster Management Authority, Govt. of India.

  • Oliver, J., & Isacks, B. (1967). Deep earthquake zones, anomalous structures in the upper mantle, and the lithosphere. Journal of Geophysical Research, 72(16), 4259–4275. https://doi.org/10.1029/JZ072i016p04259

    Article  Google Scholar 

  • Ordaz, M. (1991). Crisis. Brief description of program CRISIS p. 16. Institute of Solid Earth Physics, University of Bergen.

  • Ordaz, M., Martinelli, F., Aguilar, A., Arboleda, J., Meletti, C., & D’Amico, V. (2017). R-CRISIS. Program and platform for computing seismic hazard.

  • Pandey, S. J., Bhat, G. M., Puri, S., Raina, N., Singh, Y., Pandita, S. K., Verma, M., Bansal, B. K., & Sutar, A. (2017). Seismotectonic study of Kishtwar region of Jammu Province using local broadband seismic data. Journal of Seismology, 21(3), 525–538. https://doi.org/10.1007/s10950-016-9614-4

    Article  Google Scholar 

  • Patil, N. S., Das, J., Kumar, A., Rout, M. M., & Das, R. (2014). Probabilistic seismic hazard assessment of Himachal Pradesh and adjoining regions. Journal of Earth System Science, 123(1), 49–62. https://doi.org/10.1007/s12040-013-0378-8

    Article  Google Scholar 

  • Pavlis, G. L., & Das, S. (2000). The Pamir-Hindu Kush Seismic zone as a strain marker for flow in the upper mantle. Tectonics, 19(1), 103–115. https://doi.org/10.1029/1999TC900062

    Article  Google Scholar 

  • PMD and NORSAR. (2007). Seismic hazard analysis and zonation for Pakistan. Azad Jammu and Kashmir [Technical report p. 156].

  • Qureshi, M. N., Venkatachalam, S., & Subrahmanyam, C. (1974). Vertical tectonics in the Middle Himalayas: An approach from recent gravity data. Bulletin of the Seismological Society of America, 85, 921–926.

    Article  Google Scholar 

  • Qureshy, M. N. (1969). Thickening of a basalt layer as a possible cause for the uplift of the Himalayas—A suggestion based on gravity data. Tectonophysics, 7(2), 137–157. https://doi.org/10.1016/0040-1951(69)90003-1

    Article  Google Scholar 

  • Raghukanth, S. T. G., & Kavitha, B. (2014). Ground motion relations for active regions in India. Pure and Applied Geophysics, 171(9), 2241–2275. https://doi.org/10.1007/s00024-014-0807-x

    Article  Google Scholar 

  • Rao, K. S. (2003). Evaluation of liquefaction potential for seismic microzonation of Delhi region. In Proceedings of the Twelfth Asian Regional Conference on Soil Mechanics and Geotechnical Engineering1.

  • Rao, K. S., & Neelima Satyam, D. (2005). Seismic microzonation studies for Delhi region. In Symposium on seismic hazard analysis and microzonation, September, 2324.

  • Rao, K. S., & Ramhmachhuani, R. (2017). Site specific seismic input for structures on hill slopes. Procedia Engineering, 173, 1747–1754. https://doi.org/10.1016/j.proeng.2016.12.212

    Article  Google Scholar 

  • Rao, K. S., & Rathod, G. W. (2014). Seismic microzonation of Indian megacities: A case study of NCR Delhi. Indian Geotechnical Journal, 44(2), 132–148. https://doi.org/10.1007/s40098-013-0084-0

    Article  Google Scholar 

  • Rathod, G. W. (2011) Seismic hazard assessment and development of attenuation relationship for NCR of Delhi (Doctoral dissertation, IIT Delhi).

  • Reasenberg, P. (1985). Second-order moment of central California seismicity, 1969–1982. Journal of Geophysical Research: Solid Earth, 90(B7), 5479–5495. https://doi.org/10.1029/JB090iB07p05479

    Article  Google Scholar 

  • Reasenberg, P. A., & Jones, L. M. (1989). Earthquake hazard after a mainshock in California. Science, 243(4895), 1173–1176. https://doi.org/10.1126/science.243.4895.1173. PubMed: 17799897.

    Article  Google Scholar 

  • Rehman, K., Ali, W., Ali, A., Ali, A., & Barkat, A. (2017). Shallow and intermediate depth earthquakes in the Hindu Kush region across the Afghan-Pakistan border. Journal of Asian Earth Sciences, 148, 241–253. https://doi.org/10.1016/j.jseaes.2017.09.005

    Article  Google Scholar 

  • Reiter, L. (1990). Earthquake hazard analysis: Issues and insights. Columbia University Press.

  • Rex, A. J., Searle, M. P., Tirrul, R., Crawford, M. B., Prior, D. J., Rex, D. C., & Barnicoat, A. (1988). The geochemical and tectonic evolution of the central Karakoram, north Pakistan. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 326(1589), 229–255. https://doi.org/10.1098/rsta.1988.0086

  • Rout, M. M., Das, J., & Kamal,. (2018). Probabilistic seismic hazard for Himalayan region using kernel estimation method (zone-free method). Natural Hazards, 93(2), 967–985. https://doi.org/10.1007/s11069-018-3336-6

    Article  Google Scholar 

  • Sabetta, F., Lucantoni, A., Bungum, H., & Bommer, J. J. (2005). Sensitivity of PSHA results to ground motion prediction relations and logic-tree weights. Soil Dynamics and Earthquake Engineering, 25(4), 317–329. https://doi.org/10.1016/j.soildyn.2005.02.002

    Article  Google Scholar 

  • Sana, H. (2019). A probabilistic approach to the seismic hazard in Kashmir basin. NW Himalaya. Geoscience Letters, 6(1), 1–11.

    Google Scholar 

  • Sana, H., & Nath, S. K. (2017). Seismic source zoning and maximum credible earthquake prognosis of the Greater Kashmir Territory, NW Himalaya. Journal of Seismology, 21(2), 411–424. https://doi.org/10.1007/s10950-016-9608-2

    Article  Google Scholar 

  • Satyam, D. N. (2006). Seismic microzonation of Delhi region [Doctoral Dissertation].

  • Scordilis, E. M. (2006). Empirical Global Relations Converting ms and mb to Moment Magnitude. Journal of Seismology, 10(2), 225–236. https://doi.org/10.1007/s10950-006-9012-4

    Article  Google Scholar 

  • Searle, M. P. (1996). Geological evidence against large-scale pre-Holocene offsets along the Karakoram Fault: Implications for the limited extrusion of the Tibetan Plateau. Tectonics, 15(1), 171–186. https://doi.org/10.1029/95TC01693

    Article  Google Scholar 

  • Searle, M. P., Windley, B. F., Coward, M. P., Cooper, D. J. W., Rex, A. J., Rex, D., Tingdong, L., Xuchang, X., Jan, M. Q., Thakur, V. C., & Kumar, S. (1987). The closing of Tethys and the tectonics of the Himalaya. Geological Society of America Bulletin, 98(6), 678–701. https://doi.org/10.1130/0016-7606(1987)98%3c678:TCOTAT%3e2.0.CO;2

    Article  Google Scholar 

  • SEISAT. (2000). Seismotectonic Atlas of India and its environs. Geological Survey of India.

  • Shah, A. (2016). The Kashmir Basin fault and its influence on fluvial flooding in the Kashmir Basin, NW Himalaya. Special Papers of Geological Society of America, 520, 321–334.

    Article  Google Scholar 

  • Shah, A. A., & Malik, J. N. (2017). Four major unknown active faults identified, using satellite data, in India and Pakistan portions of NW Himalaya. Natural Hazards, 88(3), 1845–1865. https://doi.org/10.1007/s11069-017-2949-5

    Article  Google Scholar 

  • Sharma, M. L., Douglas, J., Bungum, H., & Kotadia, J. (2009). Ground-motion prediction equations based on data from the Himalayan and Zagros regions. Journal of Earthquake Engineering, 13(8), 1191–1210. https://doi.org/10.1080/13632460902859151

    Article  Google Scholar 

  • Sharma, S., Dasgupta, A., Kumar, A., Bharanidharan, B., Mittal, H., & Sachdeva, R. (2014). Earthquake Activity in Kishtwar –Dharamshala Region of North-West Himalaya Seismic gaps. International Journal of Advanced Research, 2(8), 463–470.

    Google Scholar 

  • Sharma, S., Kumar, A., & Ghangas, V. (2013). Seismicity in Jammu and Kashmir region with special reference to Kishtwar. International Journal of Scientific and Research Publications, 3(9), 1–5.

    Google Scholar 

  • Stevens, V. L., & Avouac, J. P. (2015). Interseismic coupling on the main Himalayan thrust. Geophysical Research Letters, 42(14), 5828–5837. https://doi.org/10.1002/2015GL064845

    Article  Google Scholar 

  • Talbi, A., Nanjo, K., Satake, K., Zhuang, J., & Hamdache, M. (2013). Comparison of seismicity declustering methods using a probabilistic measure of clustering. Journal of Seismology, 17(3), 1041–1061. https://doi.org/10.1007/s10950-013-9371-6

    Article  Google Scholar 

  • Tapponnier, P., & Molnar, P. (1977). Active faulting and tectonics in China. Journal of Geophysical Research, 82(20), 2905–2930. https://doi.org/10.1029/JB082i020p02905

    Article  Google Scholar 

  • Telesca, L., Lovallo, M., Golay, J., & Kanevski, M. (2016). Comparing seismicity declustering techniques by means of the joint use of Allan Factor and Morisita index. Stochastic Environmental Research and Risk Assessment, 30(1), 77–90. https://doi.org/10.1007/s00477-015-1030-8

    Article  Google Scholar 

  • Thaker, T. P., Rao, K. S., & Gupta, K. K. (2010). Seismic hazard analysis for Surat City and its surrounding region, Gujarat. In Indian Geotechnical Conference (pp. 163–166).

  • Thaker, T. P., & Rao, K. S. (2012). Seismic hazard analysis for urban territories: A case study of Ahmedabad region in the state of Gujarat, India. Advanced Soil Dynamics and Foundation Engineering, 19–228.

  • Tinti, S., & Mulargia, F. (1985). Effects of magnitude uncertainties on estimating the parameters in the Gutenberg-Richter frequency-magnitude law. Bulletin of the Seismological Society of America, 75(6), 1681–1697. https://doi.org/10.1785/BSSA0750061681

    Article  Google Scholar 

  • Trivedi, S. S., Rao, K. S., Gupta, K. K., & Patel, P. V. (2007). Development of site specific response spectra for Ahmedabad soil sites. In Proceedings of the 1st Srilankan International Conference on Soil Mechanics and Rock Engineering, Colombo, Sri Lanka.

  • Uhrhammer, R. (1986) Characteristics of northern and central California seismicity. Earthquake Notes, 57(1)

  • United States Geological Survey. (2014). Understanding plate motions. Accessed March 19, 2022 at. https://pubs.usgs.gov/publications/text/understanding.html

  • van Stiphout, T., Zhuang, J., & Marsan, D. (2012). Seismicity declustering. Community Online Resource for Statistical Seismicity Analysis, 10(1), 1–25.

    Google Scholar 

  • Vassallo, R., Mugnier, J.-L., Vignon, V., Malik, M. A., Jayangondaperumal, R., Srivastava, P., Jouanne, F., & Carcaillet, J. (2015). Distribution of the Late-Quaternary deformation in Northwestern Himalaya. Earth and Planetary Science Letters, 411, 241–252. https://doi.org/10.1016/j.epsl.2014.11.030

    Article  Google Scholar 

  • Waseem, M., & Erdik, M. (2021) Updated probabilistic seismic hazard assessment of Pakistan https://doi.org/10.21203/rs.3.rs-1146457/v1.

  • Waseem, M., Lateef, A., Ahmad, I., Khan, S., & Ahmed, W. (2019). Seismic hazard assessment of Afghanistan. Journal of Seismology, 23(2), 217–242. https://doi.org/10.1007/s10950-018-9802-5

    Article  Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.

    Google Scholar 

  • Wiemer, S., & Wyss, M. (1994). Seismic quiescence before the Landers (M =7.5) and Big Bear (6.5) 1992 earthquakes. Bulletin of the Seismological Society of America, 84, 900–916.

    Google Scholar 

  • Wiemer, S., & Wyss, M. (2000). Minimum magnitude of complete reporting in earthquake catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America, 90, 859–869.

    Article  Google Scholar 

  • Wyss, M., Wiemer, S., & Zuniga, R. (2001). ZMAP A tool for analysis of seismicity patterns: Typical Applications and Uses A cookbook 2001 Retrieved August 29, 2019. https://www.researchgate.net/publication/261170802

  • Wyss, M., & Toya, Y. (2000). Is background seismicity produced at a stationary Poissonian rate? Bulletin of the Seismological Society of America, 90(5), 1174–1187. https://doi.org/10.1785/0119990158

    Article  Google Scholar 

  • Xie, W., Hattori, K., & Han, P. (2019). Temporal variation and statistical Assessment of the b Value off the Pacific Coast of Tokachi, Hokkaido. Japan. Entropy, 21(3), 249. https://doi.org/10.3390/e21030249

    Article  Google Scholar 

  • Yeats, R. S., Nakata, T., Farah, A., Mizra, M. A., Pandey, M. R., & Stein, R. S. (1992). The Himalayan frontal fault system Geodynamics of Pakistan, Geological Survey of Pakistan: Seismicity of the Hazara arc in northern Pakistan: Décollement vs. basement faulting. Annals of Tectonophysics [special Issue], 6, 85–98.

    Google Scholar 

  • Youngs, R. R., Chiou, S.-J., Silva, W. J., & Humphrey, J. R. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes. Seismological Research Letters, 68(1), 58–73. https://doi.org/10.1785/gssrl.68.1.58

    Article  Google Scholar 

  • Yousuf, M., & Bukhari, K. (2020). Hazard estimation of Kashmir Basin, NW Himalaya using probabilistic seismic hazard assessment. Acta Geophysica, 68(5), 1295–1316. https://doi.org/10.1007/s11600-020-00485-2

    Article  Google Scholar 

  • Zare, M., & Karimi-Paridari, S. (2008). Balakot, Muzaffarabad earthquake of 8 October 2005, Mw 7.6 field observations on geological aspects, 14th World Conference on Earthquake Engineering, October 12–17, 2008, Beijing, China.

  • Zúñiga, F. R., & Wyss, M. (1995). Inadvertent changes in magnitude reported in earthquake catalogs: their evaluation through b-value estimates. Bulletin of the Seismological Society of America, 85(6), 1858–1866. https://doi.org/10.1785/BSSA0850061858

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend special thanks to Prof. Andrzej Kijko (University of Pretoria, South Africa) for generously providing the HA3 and AU3 MATLAB codes developed based on the maximum likelihood method (Kijko and Sellevoll 1982). Furthermore, we acknowledge the help of the Indian Meteorological Department (MoES) for providing the raw earthquake catalogue; Dr. Jiancang Zhuang (ISM, Japan) for furnishing the MATLAB codes for declustering algorithms; and Prof. Mario Ordaz (UNAM) for making the RCRISIS software available. The analysis presented herein has been conducted using the ZMAP tool (Wyss et al. 2001) in addition to the above-mentioned software.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by FZ. Data processing was conducted by AA. The first draft of the manuscript was written by FZ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Falak Zahoor.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1247 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahoor, F., Ansari, A., Rao, K.S. et al. Seismic Hazard Assessment of Kashmir Region Using Logic Tree Approach: Focus on Sensitivity of PSHA Results Towards Declustering Procedures and GMPEs. Pure Appl. Geophys. 180, 789–827 (2023). https://doi.org/10.1007/s00024-023-03239-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03239-5

Keywords

Navigation