Skip to main content
Log in

Probabilistic Seismic Hazard Assessment for Himalayan–Tibetan Region from Historical and Instrumental Earthquake Catalogs

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The Himalayan–Tibetan region has a long history of devastating earthquakes with wide-spread casualties and socio-economic damages. Here, we conduct the probabilistic seismic hazard analysis by incorporating the incomplete historical earthquake records along with the instrumental earthquake catalogs for the Himalayan–Tibetan region. Historical earthquake records back to more than 1000 years ago and an updated, homogenized and declustered instrumental earthquake catalog since 1906 are utilized. The essential seismicity parameters, namely, the mean seismicity rate γ, the Gutenberg–Richter b value, and the maximum expected magnitude M max are estimated using the maximum likelihood algorithm assuming the incompleteness of the catalog. To compute the hazard value, three seismogenic source models (smoothed gridded, linear, and areal sources) and two sets of ground motion prediction equations are combined by means of a logic tree on accounting the epistemic uncertainties. The peak ground acceleration (PGA) and spectral acceleration (SA) at 0.2 and 1.0 s are predicted for 2 and 10% probabilities of exceedance over 50 years assuming bedrock condition. The resulting PGA and SA maps show a significant spatio-temporal variation in the hazard values. In general, hazard value is found to be much higher than the previous studies for regions, where great earthquakes have actually occurred. The use of the historical and instrumental earthquake catalogs in combination of multiple seismogenic source models provides better seismic hazard constraints for the Himalayan–Tibetan region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahamson, N., Gregor, N., & Addo, K. (2016). BC hydro ground motion prediction equations for subduction earthquakes. Earthquake Spectra, 32(1), 23–44. doi:10.1193/051712EQS188MR.

    Article  Google Scholar 

  • Abrahamson, N. A., Silva, W. J., & Kamai, R. (2014). Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra, 30(3), 1025–1055.

    Article  Google Scholar 

  • Ader, T., Avouac, J. P., Liu-Zeng, J., Lyon-Caen, H., Bollinger, L., Galetzka, J., et al. (2012). Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. Journal of Geophysical Research: Solid Earth, 117(4), 1–16.

    Google Scholar 

  • Aki, K. (1965). Maximum likelihood estimate of b in the formula log (N) = a − bM and its confidence limits. Bulletin of the Earthquake Research Institute, University of Tokyo, 43, 237–239.

    Google Scholar 

  • Ambraseys, N. N., & Douglas, J. (2004). Magnitude calibration of north Indian earthquakes. Geophysical Journal International, 159(1), 165–206.

    Article  Google Scholar 

  • Ambraseys, N. N., Douglas, J., Sarma, S. K., & Smit, P. M. (2005). Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: Horizontal peak ground acceleration and spectral acceleration. Bulletin of Earthquake Engineering, 3(1), 1–53.

    Article  Google Scholar 

  • Atkinson, G. M., & Boore, D. M. (2003). Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bulletin of the Seismological Society of America, 93(4), 703–1729.

    Google Scholar 

  • Avouac, J.-P., Meng, L., Wei, S., Wang, T., & Ampuero, J.-P. (2015). Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nature Geoscience, 8(9), 708–711.

    Article  Google Scholar 

  • Avouac, J.-P., & Tapponnier, P. (1993). Kinematic model of active deformation in central Asia. Geophysical Research Letters, 20(10), 895–898. doi:10.1029/93GL00128.

    Article  Google Scholar 

  • Bai, L., Li, G., Khan, N. G., Zhao, J., & Ding, L. (2017). Focal depths and mechanisms of shallow earthquakes in the Himalayan–Tibetan region. Gondwana Research, 41, 390–399.

    Article  Google Scholar 

  • Bai, L., Liu, H., Ritsema, J., Mori, J., Zhang, T., Ishikawa, Y., et al. (2016). Faulting structure above the Main Himalayan Thrust as shown by relocated aftershocks of the 2015 M w 7.8 Gorkha, Nepal, earthquake. Geophysical Research Letters, 43(2), 637–642.

    Article  Google Scholar 

  • Bai, L., Ritsema, J., & Zhao, J. (2012). Focal depth estimates of earthquakes in the Himalayan–Tibetan region from teleseismic waveform modeling. Earthquake Science, 25(5–6), 459–468.

    Article  Google Scholar 

  • Bai, L., & Zhang, T. (2015). Complex deformation pattern of the Pamir-Hindu Kush region inferred from multi-scale double-difference earthquake relocations. Tectonophysics, 638(1), 177–184. doi:10.1016/j.tecto.2014.11.006.

    Article  Google Scholar 

  • Benjamin, J. R. (1968). Probabilistic models for seismic forces design. Journal of the Structural Division, 94(5), 1175–1196.

    Google Scholar 

  • Berryman, K., Ries, W., & Litchfield, N. (2014). The Himalayan frontal thrust: Attributes for seismic hazard Version 1.0, GEM Faulted Earth Project, available from http://www.nexus.globalquakemodel.org/. Accessed 10 Apr 2017.

  • Bhatia, S. C., Kumar, M. R., & Gupta, H. K. (1999). A probabilistic seismic hazard map of India and adjoining regions. Annali di Geofisica, 42(6), 1153–1164.

    Google Scholar 

  • Bilham, R. (2013). Societal and observational problems in earthquake risk assessments and their delivery to those most at risk. Tectonophysics, 584, 166–173. doi:10.1016/j.tecto.2012.03.023.

    Article  Google Scholar 

  • Bilham, R. (2015). Raising Kathmandu. Nature Geoscience, 8(8), 582–584.

    Article  Google Scholar 

  • Bollinger, L., Tapponnier, P., Sapkota, S. N., & Klinger, Y. (2016). Slip deficit in central Nepal: Omen for a pending repeat of the 1344 AD earthquake? Earth, Planets and Space, 68, 1–12. doi:10.1186/s40623-016-0389-1.

    Article  Google Scholar 

  • Bommer, J. J., Scherbaum, F., Bungum, H., Cotton, F., Sabetta, F., & Abrahamson, N. A. (2005). On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis. Bulletin of the Seismological Society of America, 95(2), 377–389.

    Article  Google Scholar 

  • Chaulagain, H., Rodrigues, H., Silva, V., Spacone, E., & Varum, H. (2015). Seismic risk assessment and hazard mapping in Nepal. Natural Hazards, 78(1), 583–602. doi:10.1007/s11069-015-1734-6.

    Article  Google Scholar 

  • Chiou, B. S. J., & Youngs, R. R. (2014). Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30(3), 1117–1153.

    Article  Google Scholar 

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606.

    Google Scholar 

  • Cornell, C. A, & Van Marke, E. H. (1969). The major influences on seismic risk. In: Proceedings of the third world conference on earthquake engineering, Santiago, Chile, A-1; 69–93.

  • Cotton, F., Scherbaum, F., Bommer, J. J., & Bungum, H. (2006). Criteria for selecting and adjusting ground-motion models for specific target regions: Application to central Europe and rock sites. Journal of Seismology, 10(2), 137–156. doi:10.1007/s10950-005-9006-7.

    Article  Google Scholar 

  • Danciu, L., Pagani, M., Monelli, D., & Wiemer, S. (2010). GEM1 Hazard: Overview of PSHA Software, GEM Technical Report 2010–2012. Pavia: GEM Foundation.

    Google Scholar 

  • Frankel, A. (1995). Mapping seismic hazard in the central and Eastern United States. Seismological Research Letters, 66(4), 8–21.

    Article  Google Scholar 

  • Gao, M. (2003). New national seismic zoning map of China. Acta Seismologica Sinica, 16(6), 639–645. doi:10.1007/s11589-003-0048-z.

    Article  Google Scholar 

  • Gardner, J., & Knopoff, L. (1974). Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian. Bulletin of the Seismological Society of America, 64(5), 1363–1367.

    Google Scholar 

  • GB 18306-2001 (2001). Seismic Ground Motion Parameter Zonation Map of China. Standard Press, Beijing.

  • Grünthal, G., & Wahlström, R. (2003). An earthquake catalogue for central, northern and northwestern Europe based on M w magnitudes. Journal of Seismology, 7(4), 507–531. doi:10.1023/B:JOSE.0000005715.87363.13.

    Article  Google Scholar 

  • Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348–2350.

    Article  Google Scholar 

  • Kaban, M. K., & Yuanda, T. R. (2014). Density structure, isostatic balance and tectonic models of the Central Tien Shan. Surveys in Geophysics, 35(6), 1375–1391. doi:10.1007/s10712-014-9298-7.

    Article  Google Scholar 

  • Kaviris, G., Papadimitriou, P., Chamilothoris, L., & Makropoulos, K. (2008). Moment magnitudes for small and intermediate earthquakes. In 31 General Assembly of the European Seismological Commission, Sept 7–12, 2008.

  • Khan, N., Bai, L., Junmeng, Z., Li, G., Rahman, M. M., Cheng, C., et al. (2017). Crustal structure beneath Tien Shan orogenic belt and its adjacent regions found by multi-scale seismic data. Science China Earth Sciences. doi:10.1007/s11430-017-9068-0.

    Google Scholar 

  • Kijko, A., & Singh, M. (2011). Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophysica, 59(4), 674–700.

    Article  Google Scholar 

  • Kijko, A., & Smit, A. (2012). Extension of the Aki-Utsu b-value estimator for incomplete catalogs. Bulletin of the Seismological Society of America, 102(3), 1283–1287. doi:10.1785/0120110226.

    Article  Google Scholar 

  • Kijko, A., Smit, A., & Sellevoll, M. A. (2016). Estimation of earthquake hazard parameters from incomplete data files. Part III. Incorporation of uncertainty of earthquake-occurrence model. Bulletin of the Seismological Society of America. doi:10.1785/0120150252.

    Google Scholar 

  • Kolathayar, S., & Sitharam, T. G. (2012). Comprehensive probabilistic seismic hazard analysis of the Andaman-Nicobar regions. Bulletin of the Seismological Society of America, 102(5), 2063–2076. doi:10.1785/0120110219.

    Article  Google Scholar 

  • Lee, W. H. K., Wu, F. T., & Jacobsen, C. (1976). A catalog of historical earthquakes in China complied from recent Chinese publications. Bulletin of the Seismological Society of America, 66(6), 2003–2016.

    Google Scholar 

  • Liu, J., Wang, Z., Xie, F., & Lv, Y. (2013). Seismic hazard assessment for greater North China from historical intensity observations. Engineering Geology, 164, 117–130.

    Article  Google Scholar 

  • Nath, S. K., & Thingbaijam, K. K. S. (2012). Probabilistic seismic hazard assessment of India. Seismological Research Letters, 83(1), 135–149.

    Article  Google Scholar 

  • Ordaz, M. G., Cardona, O.-D., Salgado-Gálvez, M. A., Bernal-Granados, G. A., Singh, S. K., & Zuloaga-Romero, D. (2014). Probabilistic seismic hazard assessment at global level. International Journal of Disaster Risk Reduction, 10, 419–427.

    Article  Google Scholar 

  • Ordaz, M., Faccioli, E., Martinelli, F., Aguilar, A., Arboleda, J., Meletti, C., & D’Amico, V. (2015). CRISIS2015 version 2.2: Computer program for computing seismic hazard. Instituto de Ingenieria, UNAM, Mexico.

  • Ornthammarath, T., Warnitchai, P., Worakanchana, K., Zaman, S., Sigbjörnsson, R., & Lai, C. G. (2011). Probabilistic seismic hazard assessment for Thailand. Bulletin of Earthquake Engineering, 9(2), 367–394.

    Article  Google Scholar 

  • Pandey, M. R., Chitrakar, G. R., Kafle, B., Sapkota, S. N., Rajaure, S. N., & Gautam, U. P. (2002). Seismic hazard map of Nepal. Kathmandu: Department of Mines and Geology.

    Google Scholar 

  • Pandey, M. R., Tandukar, R. P., Avouac, J. P., Vergne, J., & Héritier, T. (1999). Seismotectonics of the Nepal Himalaya from a local seismic network. Journal of Asian Earth Sciences, 17(5–6), 703–712.

    Article  Google Scholar 

  • Priestley, K., James, J., & Mckenzie, D. (2008). Lithospheric structure and deep earthquakes beneath India, the Himalaya and southern Tibet. Geophysical Journal International, 172(1), 345–362.

    Article  Google Scholar 

  • Rajendran, C. P., John, B., & Rajendran, K. (2015). Medieval pulse of great earthquakes in the central Himalaya: Viewing past activities on the frontal thrust. Journal of Geophysical Research: Solid Earth, 120(3), 1623–1641. doi:10.1002/2014JB011015.

    Google Scholar 

  • Ram, T. D., & Wang, G. (2013). Probabilistic seismic hazard analysis in Nepal. Earthquake Engineering and Engineering Vibration, 12(4), 577–586. doi:10.1007/s11803-013-0191-z.

    Article  Google Scholar 

  • Sabetta, F., Lucantoni, A., Bungum, H., & Bommer, J. J. (2005). Sensitivity of PSHA results to ground motion prediction relations and logic-tree weights. Soil Dynamics and Earthquake Engineering, 25(4), 317–329.

    Article  Google Scholar 

  • Sapkota, S. N., Bollinger, L., Klinger, Y., Tapponnier, P., Gaudemer, Y., & Tiwari, D. (2013). Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nature Geoscience, 6(1), 71–76. doi:10.1038/ngeo1669.

    Article  Google Scholar 

  • Sawires, R., Peláez, J. A., Fat-Helbary, R. E., & Ibrahim, H. A. (2016). Updated probabilistic seismic hazard values for Egypt. Bulletin of the Seismological Society of America, 106, 1788–1801.

    Article  Google Scholar 

  • Scordilis, E. M. (2006). Empirical global relations converting MS and mb to moment magnitude. Journal of Seismology, 10(2), 225–236.

    Article  Google Scholar 

  • Sloan, R. A., Jackson, J. A., Mckenzie, D., & Priestley, K. (2011). Earthquake depth distributions in central Asia, and their relations with lithosphere thickness, shortening and extension. Geophysical Journal International, 185(1), 1–29. doi:10.1111/j.1365-246X.2010.04882.x.

    Article  Google Scholar 

  • Stepp, J. C. (1972). Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. Proceedings of the 1st International Conference on Microzonazion, Seattle (Vol. 2, pp. 897–910).

  • Stewart, J. P., Douglas, J., Javanbarg, M. B., Alessandro, C. Di, Bozorgnia, Y., Abrahamson, N. A., & Stafford, P. J. (2013). GEM-PEER Task 3 Project: Selection of a Global Set of Ground Motion Prediction Equations. PEER Report 2013/22; Available at www.nexus.globalquakemodel.org/. Accessed 10 Jan 2017.

  • Stirling, M., & Goded, T. (2012). Magnitude scaling relationships. Report Produced for the GEM Faulted Earth & Regionalisation Global Components, GNS Science Miscellaneous Series, 42, 35.

    Google Scholar 

  • Styron, R., Taylor, M., & Okoronkwo, K. (2010). Database of active structures from the Indo-Asian Collision. Eos (Washington. DC), 91(20), 181–182. doi:10.1029/2010EO200001.

    Google Scholar 

  • Szeliga, W., Hough, S., Martin, S., & Bilham, R. (2010). Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762. Bulletin of the Seismological Society of America, 100(2), 570–584.

    Article  Google Scholar 

  • Tapponnier, P., Xu, Z. Q., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., et al. (2001). Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547), 1671–1677. doi:10.1126/science.105978.

    Article  Google Scholar 

  • Tinti, S., & Mulargia, F. (1985). An improved method for the analysis of the completeness of a seismic catalogue. Lett Al Nuovo Cimento, 42(1), 7–21.

    Article  Google Scholar 

  • Wang, Z., Butler, D. T., Woolery, E. W., & Wang, L. (2012). Seismic hazard assessment for the Tianshui urban area, Gansu Province. China. International Journal of Geophysics. doi:10.1155/2012/461863.

    Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.

    Google Scholar 

  • Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America, 90(4), 859–869. doi:10.1785/0119990114.

    Article  Google Scholar 

  • Woo, G. (1996). Kernel estimation methods for seismic hazard area source modelling. Bulletin of the Seismological Society of America, 88, 353–362.

    Google Scholar 

  • Yen, Y. T., & Ma, K. F. (2011). Source-Scaling relationship for M 4.6–8.9 earthquakes, specifically for earthquakes in the Collision Zone of Taiwan. Bulletin of the Seismological Society of America, 101(2), 464–481. doi:10.1785/0120100046.

    Article  Google Scholar 

  • Youngs, R. R., Chiou, S.-J., Silva, W. J., & Humphrey, J. R. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes. Seismological Research Letters, 68(1), 58–73.

    Article  Google Scholar 

  • Zhang, P., Yang, Z., Gupta, H. K., Bhatia, S. C., & Shedlock, K. M. (1999). Global seismic hazard assessment program (GSHAP) in continental Asia. Annali di Geofisica, 42(6), 1167–1190. doi:10.4401/ag-3778.

    Google Scholar 

  • Zhangming, W. (1992). Distribution of seismicity and active faults in Tibetan plateau. Journal of Seismological Research, 15(2), 210–218.

    Google Scholar 

  • Zhao, J., Lu, F., Li, Z., Wang, Y., Ma, W., & Liu, X. (2012). Lithospheric structure and geodynamics at the northern margin of Tibetan plateau. Earthquake Science, 25(5), 433–450. doi:10.1007/s11589-012-0868-9.

    Article  Google Scholar 

  • Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., et al. (2006). Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of the Seismological Society of America, 96(3), 898–913.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the grant of the National Nature Science Foundation of China (No. 41490611) to L.B., and by the President’s PhD Fellowship of the Chinese Academy of Sciences (CAS) and The World Academy of Sciences (TWAS) to M.M.R. We used earthquake catalogs from the ISC, USGS, GEM, CSN, NOAA, and NSC. We are grateful to the guest editor Zhigang Peng and two anonymous reviewers for their constructive comments and thoroughly review on the manuscript. We thank Fabrice Cotton for the useful discussions. We are grateful to Andrzej Kijko and his colleagues for providing the “HA3” program and Mario Ordaz for providing the recently developed version of the CRISIS software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Bai, L., Khan, N.G. et al. Probabilistic Seismic Hazard Assessment for Himalayan–Tibetan Region from Historical and Instrumental Earthquake Catalogs. Pure Appl. Geophys. 175, 685–705 (2018). https://doi.org/10.1007/s00024-017-1659-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1659-y

Keywords

Navigation