Skip to main content
Log in

Dispersive Estimates for Linearized Water Wave-Type Equations in \(\mathbb {R}^d\)

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We derive a \(L^1_x (\mathbb {R}^d)-L^{\infty }_x (\mathbb {R}^d)\) decay estimate of order \(\mathcal O \left( t^{-d/2}\right) \) for the linear propagators

$$\begin{aligned} \exp \left( {\pm it \sqrt{ |D|\left( 1+ \beta |D|^2\right) \tanh |D | } }\right) , \qquad \beta \in \{0, 1\}. \quad D= -i\nabla , \end{aligned}$$

with a loss of 3d/4 or d/4–derivatives in the case \(\beta =0\) or \(\beta =1\), respectively. These linear propagators are known to be associated with the linearized water wave equations, where the parameter \(\beta \) measures surface tension effects. As an application, we prove low regularity well-posedness for a Whitham–Boussinesq-type system in \(\mathbb {R}^d\), \(d\ge 2\). This generalizes a recent result by Dinvay, Selberg and the third author where they proved low regularity well-posedness in \(\mathbb {R}\) and \(\mathbb {R}^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here we used the notation \(a \pm : =a \pm \varepsilon \) for sufficiently small \(\varepsilon >0\).

References

  1. Carter, J.D.: Bi-directional Whitham equations as models of waves on shallow water. Wave Motion 82, 51–61 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Deneke, T., Dufera, T.T., Tesfahun, A.: Comparison between Boussinesq and Whitham-Boussinesq type systems. Math. Methods Appl. Sci. (2022). https://doi.org/10.1002/mma.8304

    Article  MathSciNet  Google Scholar 

  3. Dinvay, E.: On well-posedness of a dispersive system of the Whitham-Boussinesq type. Appl. Math. Lett. 88, 13–20 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dinvay, E., Dutykh, D., Kalisch, H.: A comparative study of bi-directional Whitham systems. Appl. Numer. Math. 141, 248–262 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dinvay, E., Moldabayev, D., Dutykh, D., Kalisch, H.: The Whitham equation with surface tension. Nonlinear Dyn. 88, 1125–1138 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dinvay, E., Selberg, S., Tesfahun, A.: Well-posedness for a dispersive system of the Whitham-Boussinesq type. SIAM J. Math. Anal. 52(3), 2353–2382

  7. Grafakos, L.: Classical Fourier analysis, third ed., Graduate Texts in Mathematics, vol. 249, Springer, New York (2014)

  8. John, F.: Plane Waves and Spherical Means Applied to Partial Differential Equations. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  9. Klein, C., Linares, F., Pilod, D., Saut, J.-C.: On Whitham and related equations. Stud. Appl. Math. 140, 133–177 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lannes, D.: Water waves: Mathematical Theory and Asymptotics, Mathematical Surveys and Monographs, vol. 188. AMS, Providence (2013)

    MATH  Google Scholar 

  11. Pilod, D., Saut, J.-C., Selberg, S., Tesfahun, A.: Dispersive estimates for full dispersion KP equations. J. Math. Fluid Mech. 23, 25 (2021). https://doi.org/10.1007/s00021-021-00557-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Remonato, F., Kalisch, H.: Numerical bifurcation for the capillary Whitham equation. Physica D 343, 51–62 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton, NJ (1993)

    Google Scholar 

  14. Tesfahun, A.: Long-time existence for Whitham-Boussinesq system in two dimensions. Commun. Contemp. Math. (2022). https://doi.org/10.1142/S0219199722500651

    Article  Google Scholar 

  15. Tao, T.: Nonlinear Dispersive Equations, CBMS Reg. Conf. Ser. Math. 106, AMS, Providence, RI (2006)

Download references

Acknowledgements

The authors would like to thank the anonymous referees for useful comments on an earlier versions of this article. A. Tesfahun was supported by the Faculty Development Competitive Research Grants Program 2022-2024, Nazarbayev University: Nonlinear Partial Differential Equations in Material Science (Ref. 11022021FD2929)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achenef Tesfahun.

Additional information

Communicated by Nader Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we derive some useful estimates on the derivatives of all order for the function

$$\begin{aligned} m_\beta (r)=\sqrt{ r\left( 1+ \beta r^2\right) \tanh ( r ) }, \qquad \beta \in \{0, 1\}. \end{aligned}$$

Estimates for the first- and second-order derivatives of this function are derived recently in [11].

Clearly,

$$\begin{aligned} m_\beta (r) \sim r \langle \sqrt{\beta } r \rangle \langle r \rangle ^{-1/2}. \end{aligned}$$
(6.1)

Lemma 5

Let \(\beta \in \{0, 1\}\) and \(r>0\). Then,

$$\begin{aligned} m_\beta '(r)&\sim \langle \sqrt{\beta } r \rangle \langle r \rangle ^{-1/2}, \end{aligned}$$
(6.2)
$$\begin{aligned} |m_\beta ''(r)|&\sim r \langle \sqrt{\beta } r \rangle \langle r \rangle ^{-5/2}. \end{aligned}$$
(6.3)

Moreover,

$$\begin{aligned} |m_\beta ^{(k)}(r)|\underset{k}{\lesssim }r^{1- k} \langle \sqrt{\beta } r \rangle \langle r \rangle ^{-1/2} \qquad ( k \ge 3 ). \end{aligned}$$
(6.4)

Proof

The estimates (6.2) and (6.3) are proved in [11, Lemma 3.2, see its proof in Section 5]. So we only prove (6.4).

Let

$$\begin{aligned} T(r)=\tanh r, \qquad S(r)={{\,\textrm{sech}\,}}r. \end{aligned}$$

Then,

$$\begin{aligned} T'&=S^2, \qquad S'=-T S, \qquad T''=-2TS^2. \end{aligned}$$

In general, we have

$$\begin{aligned} T^{(j)} (r)= S^2 \cdot P_{j-1}( S, T) \qquad (j\ge 1) \end{aligned}$$

for some polynomial \(P_{j-1}\) of degree \(j-1\).

Clearly,

$$\begin{aligned} T(r) \sim r\langle r \rangle ^{-1} \qquad \text {and} \qquad S(r) \sim e^{-r}. \end{aligned}$$

So \( |P_{j-1}( S, T) |\lesssim 1\), and hence

$$\begin{aligned} |T^{(j)}(r)| \lesssim e^{-2r} \qquad (j\ge 1). \end{aligned}$$
(6.5)

Write

$$\begin{aligned} m_\beta (r)= f_\beta (r) \cdot T_0(r), \end{aligned}$$

where \(f_\beta (r)= \sqrt{ r} \langle \sqrt{\beta } r \rangle \) and \( T_0(r)=\sqrt{ T(r) }.\) One can show that

$$\begin{aligned} \Bigl \vert f_\beta ^{(j)}(r) \Bigr \vert \lesssim r^{\frac{1}{2} -j} \langle \sqrt{\beta } r \rangle \qquad ( j\ge 0). \end{aligned}$$
(6.6)

Combining (6.5) with \(T(r) \sim r\langle r \rangle ^{-1} \) we obtain

$$\begin{aligned} T_0(r) \sim r^\frac{1}{2} \langle r \rangle ^{-\frac{1}{2}} , \qquad \Bigl \vert T^{(j)}_0(r) \Bigr \vert \lesssim r^{\frac{1}{2} -j } \langle r \rangle ^{j-\frac{1}{2} } e^{-2 r} \qquad ( j\ge 1). \end{aligned}$$
(6.7)

Finally, we use (6.6) and (6.7) to obtain for all \(k \ge 3\),

$$\begin{aligned} \Bigl \vert m_\beta ^{(k)}(r) \Bigr \vert&= \Bigl \vert f_\beta ^{(k)}(r) T_0(r) + \sum _{j=1}^k \begin{pmatrix} k \\ j \end{pmatrix} f_\beta ^{(k-j)}(r) T^{(j)}_0(r) \Bigr \vert \\ {}&\lesssim r^{1 -k} \langle \sqrt{\beta } r \rangle \langle r \rangle ^{-\frac{1}{2}} + \sum _{j=1}^k \begin{pmatrix} k \\ j \end{pmatrix} r^{\frac{1}{2} -(k-j)} \langle \sqrt{\beta } r \rangle \cdot r^{\frac{1}{2} -j } \langle r \rangle ^{j-\frac{1}{2} } e^{-2r} \\ {}&\lesssim r^{1 -k} \langle \sqrt{\beta } r \rangle \langle r \rangle ^{-\frac{1}{2}} . \end{aligned}$$

\(\square \)

Corollary 2

For \(\lambda , r>0\), define \(m_{\beta , \lambda }(r)= m_\beta (\lambda r)\). Then,

$$\begin{aligned} \max _{ r\sim 1}\Bigl \vert \partial _r ^k \left( \frac{1}{ m'_{\beta , \lambda }(r)} \right) \Bigr \vert \underset{k}{\lesssim }\lambda ^{-1} \langle \sqrt{\beta } \lambda \rangle ^{-1}\langle \lambda \rangle ^{\frac{1}{2}} \qquad (k \ge 0). \end{aligned}$$
(6.8)

Proof

Observe that

$$\begin{aligned} m^{(k)}_{\beta , \lambda }(r) = \lambda ^k m_\beta ^{(k)}(\lambda r) \qquad (k\ge 1). \end{aligned}$$

By (6.2) we have, for \(r\sim 1\),

$$\begin{aligned} | m'_{\beta , \lambda }(r) |\sim \lambda \langle \sqrt{\beta } \lambda \rangle \langle \lambda \rangle ^{-\frac{1}{2}} \end{aligned}$$

and by (6.3)–(6.4)

$$\begin{aligned} |m^{(k)}_{\beta , \lambda }(r) | \underset{k}{\lesssim }\lambda \langle \sqrt{\beta } \lambda \rangle \langle \lambda \rangle ^{-\frac{1}{2}} \qquad (k\ge 2). \end{aligned}$$

Finally, one can combine these two estimates with the differentiation formula

$$\begin{aligned} \partial _r^k \left( \frac{1}{f} \right) =\sum _{p=1}^k \sum _{ \begin{array}{c} k_1, \cdots , k_p \in \mathbb {N}\\ k_1+ \cdots + k_p =k \end{array}} c_{p, k_1, \cdots , k_p } \frac{ \partial _r^{k_1} f \cdots \partial _r^{k_p} f }{f^{p+1}} \end{aligned}$$

to obtain the desired estimate (6.8). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deneke, T., Dufera, T.T. & Tesfahun, A. Dispersive Estimates for Linearized Water Wave-Type Equations in \(\mathbb {R}^d\). Ann. Henri Poincaré 24, 3741–3761 (2023). https://doi.org/10.1007/s00023-023-01322-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-023-01322-0

Mathematics Subject Classification

Navigation