Skip to main content
Log in

Trapped Surface Formation for Spherically Symmetric Einstein–Maxwell-Charged Scalar Field System with Double Null Foliation

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this paper, we generalize a method introduced by Christodoulou for studying the Einstein-scalar field to prove a trapped surface formation criterion for the Einstein–Maxwell-charged scalar field system under spherical symmetry. If we further require the initial charge to be sufficiently small, we obtain an almost-scale-critical result in the perturbative regime. In the “Appendix”, we also include a proof of Christodoulou’s result on trapped surface formation for the Einstein-scalar field using double null coordinates, as well as a strengthed scale-critical criterion in the case of Minkowskian incoming characteristic initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. A trapped surface is a two-dimensional sphere, with both incoming and outgoing null expansions negative.

  2. This definition for r implies that \(g|_S = r^2(\mathrm{d}\theta ^2+sin^2\theta \mathrm{d}\phi ^2)\)

References

  1. An, X., Luk, J.: Trapped surfaces in vacuum arising dynamically from mild incoming radiation. Adv. Theor. Math. Phys. 21(1), 1–120 (2017)

    Article  MathSciNet  Google Scholar 

  2. An, X.: A scale-critical trapped surface formation criterion: a new proof via signature for decay rates. Ann. PDE 8(3), 89 (2022)

    MathSciNet  MATH  Google Scholar 

  3. Andréasson, H.: Black hole formation from a complete regular past for collisionless matter. Ann. Henri Poincaré 13, 1511–1536 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  4. Andréasson, H., Rein, G.: Formation of trapped surfaces for the spherically symmetric Einstein–Vlasov system. J. Hyperbolic Differ. Equ. 7, 707–731 (2010)

    Article  MathSciNet  Google Scholar 

  5. Burtscher, A., LeFloch, P.: The formation of trapped surfaces in spherically-symmetric Einstein–Euler spacetimes with bounded variation. J. Math. Pures Appl. 102, 1164–1217 (2014)

    Article  MathSciNet  Google Scholar 

  6. Christodoulou, D.: The formation of black holes and singularities in spherically symmetric gravitational collapse. Commun. Pure Appl. Math. 44(3), 339–373 (1991)

    Article  MathSciNet  Google Scholar 

  7. Christodoulou, D.: Bounded variation solutions of the spherically symmetric Einstein-scalar field equations. Commun. Pure Appl. Math. 46(8), 1131–1220 (1993)

    Article  MathSciNet  Google Scholar 

  8. Christodoulou, D.: Examples of naked singularity formation in the gravitational collapse of a scalar field. Ann. Math. 140(3), 607–653 (1994)

    Article  MathSciNet  Google Scholar 

  9. Christodoulou, D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. 149(1), 183–217 (1999)

    Article  MathSciNet  Google Scholar 

  10. Dafermos, M.: Stability and instability of the Cauchy horizon for the spherically symmetric EinsteinMaxwell-scalar field equations. Ann. Math. 158, 875–928 (2003)

    Article  MathSciNet  Google Scholar 

  11. Dafermos, M.: The interior of charged black holes and the problem of uniqueness in general relativity. Commun. Pure Appl. Math. 58, 0445–0504 (2005)

    Article  MathSciNet  Google Scholar 

  12. Komemmi, J.: The global structure of spherically symmetric charged scalar field spacetimes. Commun. Math. Phys. 323(1), 35–106 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Liu, J., Li, J.: A robust proof of the instability of naked singularities of a scalar field in spherical symmetry. Commun. Math. Phys. 363(2), 561–578 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. Luk, J., Oh, S.-J.: Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data I, the interior of the black hole region. Ann. Math. 190, 1–111 (2019)

    Article  MathSciNet  Google Scholar 

  15. Moschidis, G.: A proof of the instability of AdS for the Einstein-massless Vlasov system. arXiv:1812.04268 (2018)

  16. Moschidis, G.: A proof of the instability of AdS for the Einstein-null dust system with an inner mirror, Analysis & PDE (to appear). arXiv:1704.08681 (2017)

  17. Van de Moortel, M.: Stability and instability of the sub-extremal Reissner-Nordström black hole interior for the Einstein-Maxwell-Klein-Gordon equations in spherical symmetry. Commun. Math. Phys. 360, 103 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

XA is supported by the MOE startup grant under Project Number R-146-000-269-133. ZFL conducted this research during his final year project at NUS supervised by XA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinliang An.

Additional information

Communicated by Mihalis Dafermos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Trapped Surface Formation for the Einstein Scalar Field

Here, we provide a proof of Christodolou’s sharp trapped surface formation criterion as in [6]. In the case for the real scalar field, the system of Eqs. (2.4) to (2.12) is reduced to

$$\begin{aligned}&r\partial _v\partial _ur+\partial _vr\partial _ur=-\frac{\Omega ^2}{4}, \end{aligned}$$
(4.1)
$$\begin{aligned}&\partial _u(\Omega ^{-2}\partial _ur) = -4\pi r\Omega ^{-2}|\partial _u\phi |^2,\end{aligned}$$
(4.2)
$$\begin{aligned}&\partial _v(\Omega ^{-2}\partial _vr) = -4\pi r\Omega ^{-2}|\partial _v\phi |^2,\end{aligned}$$
(4.3)
$$\begin{aligned}&r\partial _u\partial _v\phi +\partial _ur\partial _v\phi +\partial _vr\partial _u\phi =0. \end{aligned}$$
(4.4)

Also, the derivatives of the Hawking mass become:

$$\begin{aligned}&\partial _um= =-8\pi r^2\Omega ^{-2}\partial _vr|\partial _u\phi |^2, \end{aligned}$$
(4.5)
$$\begin{aligned}&\partial _vm = -8\pi r^2\Omega ^{-2}\partial _ur|\partial _v\phi |^2. \end{aligned}$$
(4.6)

For convenience, we restate theorem 1.1 here.

Theorem 1.1. Define the function

$$\begin{aligned} E(x):=\frac{x}{(1+x)^2}\bigg [\ln \bigg (\frac{1}{2x}\bigg )+5-x\bigg ]. \end{aligned}$$

Consider the system (1.1) with characteristic initial data along \(u=u_0\) and \(v=v_1\). For initial mass input \(\eta _0\) along \(u=u_0\), if the following lower bound holds:

$$\begin{aligned} \eta _0>E(\delta _0), \end{aligned}$$

then a trapped surface \(S_{u,v}\), with properties \(\partial _v r(u,v)<0\) and \(\partial _u r(u,v)< 0\), forms in the region \([u_0,u_*]\times [v_1,v_2]\subset \mathcal {R}\).

In this section, we will first give a few technical estimates to the dynamical quantities in the strip \([u_0,0]\times [v_1,v_2]\). These will be used in the proof for Theorem 1.1. We start off by showing that \(\partial _ur\) is negative and bounded away from 0.

Lemma 4.1

\(\partial _ur\le -\frac{1}{2}\Omega ^2\) everywhere in \(\mathcal {D}(0,v_1)\cup \big ([u_0,0]\times [v_1,\infty )\big )\)

Proof

Rewrite (4.1) as

$$\begin{aligned} \partial _v\big (r\partial _ur\big )=-\frac{\Omega ^2}{4}. \end{aligned}$$

Note that \(\Omega ^2=1\) along C. Integrating both sides from 0 to v and dividing by r:

$$\begin{aligned} -\frac{v}{4r(u_0,v)} = \partial _ur(u_0,v). \end{aligned}$$
(4.7)

Setting \(v = 0 \) in the above gives us

$$\begin{aligned} -\frac{1}{4\partial _vr(u_0,0)}=\partial _ur(u_0,0) = -\partial _vr(u_0,0)\implies \partial _vr(u_0,0)=\frac{1}{2}. \end{aligned}$$
(4.8)

Since \(\Omega ^2 = 1\) on C as well, (4.3) gives us that \(\partial _v\partial _vr\le 0\), i.e., r is concave with respect to v. Combining this with the fact that \(r(u_0,0) = v(u_0,0) = 0\), we have:

$$\begin{aligned} \frac{r}{v}(u_0,v)\le \partial _vr(u_0,0). \end{aligned}$$

Hence,

$$\begin{aligned} \frac{r}{v}(u_0,v)\le \frac{1}{2}. \end{aligned}$$

Substitute this into (4.7), we get

$$\begin{aligned} \partial _ur(u_0,v)\le -\frac{1}{2}. \end{aligned}$$

By (4.3), \(\Omega ^{-2}\partial _ur\) is decreasing along incoming null geodesics. Hence for a general point in \(\mathcal {D}(0,v_1)\cup \big ([u_0,0]\times [v_1,\infty )\big )\), we have \(\Omega ^{-2}\partial _ur\le -\frac{1}{2}\). \(\square \)

Remark 4.2

\(m(u,v)\ge 0\) for all \((u,v)\in \mathcal {D}(0,v_1)\cup \big ([u_0,0]\times [v_1,\infty )\big )\)

Proof

Given any point \((u,v)\in \mathcal {R}\), we can extend the outgoing null geodesic backwards until it intersects \(\Gamma \) at some coordinate \((u,v_c)\), so that \(r(u,v_c) = 0\). Using (4.6), we have

$$\begin{aligned} \partial _vm = -8\pi r^2\Omega ^{-2}\partial _ur|\partial _v\phi |^2, \end{aligned}$$

and since \(\partial _ur\le 0\) by Lemma 4.1, we get that \(\partial _vm\ge 0\). Combining with the fact that \(m(u,v_c) = 0\), we obtain the desired result. \(\square \)

Next, we show that the mixed derivative of r is always negative. This places a upper bound on the growth on the ratio \(\frac{r_2}{r_1}\).

Proposition 4.3

Assume that \(\mathcal {D}(0,v_1)\cup \mathcal {R}\) is free of trapped surfaces. Then, i) \(\partial _u\partial _vr \le 0\) in \(\mathcal {R}\) and ii) \(\delta (x):=\frac{r_2}{r_1}-1\le \frac{1}{2}\) for \(u\in [u_0,u_*]\).

Proof

We rewrite (4.1) into the following equivalent form:

$$\begin{aligned} \partial _u\partial _vr=-\frac{\Omega ^2}{{2}}\frac{m}{r^2}. \end{aligned}$$
(4.9)

Since \(m\ge 0\), the right side of the above equation is non-positive. This proves the first part of the lemma.

Integrating with respect to u, we get:

$$\begin{aligned} \partial _vr(u)-\partial _vr(u_0){\le 0}\implies \partial _vr(u)\le \partial _vr(u_0). \end{aligned}$$

Integrating the above inequality with respect to v,

$$\begin{aligned} r_2(u)-r_1(u)\le r_2(u_0)-r_1(u_0), \text {for all } u\in [u_0,u_*]. \end{aligned}$$

Hence, we can use the above inequality to compute a bound for \(\delta (u)\):

$$\begin{aligned} \begin{aligned} \delta (u) = \frac{r_2}{r_1}-1&=\frac{r_2-r_1}{r_2-(r_2-r_1)}\le \frac{r_2(u_0)-r_1(u_0)}{r_2(u)-(r_2(u_0)-r_1(u_0))}\\&\le \frac{\delta _0}{\frac{r_2(u)}{r_1(u_0)}-\delta _0}=\frac{\delta _0}{x(u)(1+\delta _0)-\delta _0},\text { for all }u\in [u_0,u_*], \end{aligned} \end{aligned}$$
(4.10)

where \(x(u):=r_2(u)/r_2(u_0)\). Recall \(r_2(u_*):=\frac{3\delta _0}{1+\delta _0}\cdot r_2(u_0)\) and since x(u) is monotonically decreasing, we have

$$\begin{aligned} x(u)\ge x(u_*) = \frac{3\delta _0}{1+\delta _0} \text { for }u\in [u_0,u_*], \end{aligned}$$

and hence

$$\begin{aligned} \delta (u)\le \frac{\delta _0}{2\delta _0} = \frac{1}{2}\text { for all }u\in [u_0,u_*]. \end{aligned}$$

\(\square \)

Next we prove two key lemmas. In the first one, we bound the difference in \(r\partial _u\phi \) between \(v=v_1\) and \(v=v_2\). Then in the second, we bound the ratio of \(\partial _vr\) between \(v=v_1\) and \(v=v_2\).

Lemma 4.4

Define \(\Theta :=r_2\partial _u\phi _2-r_1\partial _u\phi _1\). Suppose that \(\mathcal {D}(0,v_1)\cup \mathcal {R}\) is free of trapped surfaces. Then,

$$\begin{aligned} \Theta (u)^2\le \frac{\partial _ur_2}{8\pi \Omega _2^{-2}\partial _vr_2}(m_2-m_1)\bigg (\frac{1}{r_2}-\frac{1}{r_1}\bigg )(u) \end{aligned}$$

for all \(u\in [u_0,u_*]\).

Proof

We can write the wave Eq. (4.4) as

$$\begin{aligned} \partial _v(r\partial _u\phi ) = -\partial _ur\partial _v\phi . \end{aligned}$$

By integrating the above equation, we get

$$\begin{aligned} \Theta ^2&= \big (r_2\partial _u\phi _2-r_1\partial _u\phi _1\big )^2\nonumber \\ {}&=\bigg |\int _{v_1}^{v_2}-\partial _ur\partial _v\phi \mathrm{d}v\bigg |^2\nonumber \le \bigg (\int _{v_1}^{v_2}-\partial _ur|\partial _v\phi | \mathrm{d}v\bigg )^2\nonumber \\&\le \frac{1}{8\pi }\int _{v_1}^{v_2}-8\pi r^2\partial _ur\Omega ^{-2}|\partial _v\phi |^2\mathrm{d}v\cdot \int _{v_1}^{v_2}-\frac{\partial _ur}{r^2\Omega ^{-2}}\mathrm{d}v \end{aligned}$$
(4.11)

where we have applied Holder’s inequality for the last inequality.

The first integral can be written in terms of the hawking mass:

$$\begin{aligned} \int _{v_1}^{v_2}-8\pi r^2\partial _ur\Omega ^{-2}|\partial _v\phi |^2\mathrm{d}v&=\int _{v_1}^{v_2}\partial _vm\,\mathrm{d}v\nonumber \\&=m_2-m_1. \end{aligned}$$
(4.12)

To bound the second integral, we apply Proposition 4.3 to get \(\partial _v\partial _ur\le 0\), and hence \(\partial _ur\ge \partial _ur_2\). Also, Eq. (4.3) implies that \(\Omega _2^{-2}\partial _vr_2\le \Omega ^{-2}\partial _vr\). Combining these two pieces of information, we have

$$\begin{aligned} \int _{v_1}^{v_2}-\frac{\partial _ur}{r^2\Omega ^{-2}}\mathrm{d}v&=\int _{r_1}^{r_2}-\frac{\partial _ur}{r^2\Omega ^{-2}\partial _vr}\mathrm{d}r\nonumber \le -\partial _ur_2\int _{r_1}^{r_2}\frac{1}{r^2\Omega ^{-2}\partial _vr}\mathrm{d}r\nonumber \\&\le \frac{-\partial _ur_2}{\Omega _2^{-2}\partial _vr_2}\int _{r_1}^{r_2}\frac{1}{r^2}\mathrm{d}r=\frac{\partial _ur_2}{\Omega _2^{-2}\partial _vr_2}\big (\frac{1}{r_2}-\frac{1}{r_1}\big ) \end{aligned}$$
(4.13)

Substituting (4.12) and (4.13) back into (4.11) gives us the desired result. \(\square \)

Lemma 4.5

Assume that \(\mathcal {D}(0,v_1)\cup \mathcal {R}\) is free of trapped surfaces. Then

$$\begin{aligned} \frac{\Omega _2^{-2}\partial _vr_2}{\Omega _1^{-2}\partial _vr_1}(u)\le e^{-\eta (u)} \end{aligned}$$

for all \(u\in [u_0,u_*]\).

Proof

Dividing both sides of Eq. (4.3) by \(\Omega ^{-2}\partial _vr\) and integrating from \(v_1\) to \(v_2\), we get

$$\begin{aligned} \ln |\Omega _2^{-2}\partial _vr_2|-\ln |\Omega _1^{-2}\partial _vr_1| = \ln \bigg (\frac{\Omega _2^{-2}\partial _vr_2}{\Omega _1^{-2}\partial _vr_1}\bigg )=-4\pi \int _{v_1}^{v_2}\frac{r|\partial _v\phi |^2}{\partial _vr}\mathrm{d}v. \end{aligned}$$

By Eq. (4.6) and the definition of the Hawking mass, we have

$$\begin{aligned} \frac{\partial _vm}{r-2m}=\frac{-8\pi r^2\Omega ^{-2}\partial _ur|\partial _v\phi |^2}{-4r\Omega ^{-2}\partial _ur\partial _vr}=\frac{2\pi r|\partial _v\phi |^2}{\partial _vr}. \end{aligned}$$

Hence for any \(u\in [u_0,u_*]\)

$$\begin{aligned}&\ln \bigg (\frac{\Omega _2^{-2}\partial _vr_2}{\Omega _1^{-2}\partial _vr_1}\bigg )\\&\quad =-2\int _{v_1}^{v_2}\frac{\partial _vm}{r-2m}\mathrm{d}v\le -2\int _{v_1}^{v_2}\frac{1}{r}\partial _vm\,\mathrm{d}v\\&\quad \le \frac{-2}{r_2}\int _{v_1}^{v_2}\partial _vm\text { }\mathrm{d}v=-\frac{2(m_2-m_1)}{r_2}=-\eta \end{aligned}$$

Exponentiating both sides of the above inequality gives us the desired result. \(\square \)

Now we are ready to prove Theorem 1.1.

Proof

(Theorem 1.1) We consider the dimensionless length scale \(x(u):=\frac{r_2(u)}{r_2(u_0)}\). Note that x decreases as u increases and \(x(u_0) = 1\). We will show that \(\frac{\mathrm{d}\eta }{\mathrm{d}x}\) is bounded from above, i.e., \(\frac{\mathrm{d}\eta }{\mathrm{d}u}\) is bounded from below, and hence obtain a lower bound for \(\eta (u_*)\). If this lower bound is greater than 1, this implies \(S(u_*,v_2)\) is a trapped surface, for

$$\begin{aligned} \eta (u_*)= \frac{2(m_2-m_1)}{r_2}(u_*)>1&\implies \frac{2m_2}{r_2}(u_*)>1\\&\implies S(u_*,v) \text { is a trapped surface.} \end{aligned}$$

See Fig. 4 for an illustration.

Fig. 4
figure 4

Idea of Proof of Theorem 1.1

To be precise, we prove a Gronwall-like inequality under the assumption that there is no trapped surface formed before \(u_*\). In particular, we assume that \(\partial _vr_2(u)>0\) for all \(u\in [u_0,u_*]\). We show that this assumption will lead to a contradiction.

Assuming that \(\partial _vr_2(u)>0\) for all \(u\in [u_0,u_*]\), the following chain of identities hold in the region \([u_0,u_*]\times [v_1,v_2]\):

$$\begin{aligned} \frac{\mathrm{d}\eta }{\mathrm{d}x}&= \frac{\mathrm{d}\eta }{\mathrm{d}u}\bigg /\frac{\mathrm{d}x}{\mathrm{d}u} = \frac{r_2(u_0)}{\partial _ur_2}\bigg (-\frac{2\partial _ur_2}{r_2^2}(m_2-m_1)+\frac{2}{r_2}\partial _u(m_2-m_1)\bigg )\nonumber \\&=-\frac{\eta }{x}+\frac{2}{x\partial _ur_2}(-8\pi r_2^2\Omega _2^{-2}\partial _vr_2|\partial _u\phi _2|^2+8\pi r_1^2\Omega _1^{-2}\partial _vr_1|\partial _u\phi _1|^2)\nonumber \\&=-\frac{\eta }{x}-\frac{16\pi \partial _vr_2\Omega _2^{-2}}{x\partial _ur_2}\bigg (r_2^2|\partial _u\phi _2|^2-\frac{\Omega _1^{-2}\partial _vr_1}{\Omega _2^{-2}\partial _vr_2}r_1^2|\partial _u\phi _1|^2\bigg ). \end{aligned}$$
(4.14)

Using Lemma 4.5, we can bound the factor in the second term:

$$\begin{aligned} r_2^2|\partial _u\phi _2|^2-\frac{\Omega _1^{-2}\partial _vr_1}{\Omega _2^{-2}\partial _vr_2}r_1^2|\partial _u\phi _1|^2&\le r_2^2|\partial _u\phi _2|^2-e^\eta {r_1^2}|\partial _u\phi _1|^2\\&=\Theta ^2+2\Theta \partial _u\phi _1r_1+(1-e^\eta )r_1^2|\partial _u\phi _1|^2. \end{aligned}$$

The last expression, being a quadratic in \(\Theta \), can be bounded by a monic quadratic polynomial in \(\Theta \):

$$\begin{aligned} \Theta ^2+2\Theta \partial _u\phi _1r_1+(1-e^\eta )r_1^2|\partial _u\phi _1|^2&\le \bigg (1+\frac{1}{e^\eta -1}\bigg )\Theta ^2\le \bigg (1+\frac{1}{\eta }\bigg )\Theta ^2, \end{aligned}$$

since \(\eta \ge 0\). This last inequality combines with (4.14) to give:

$$\begin{aligned} \frac{\mathrm{d}\eta }{\mathrm{d}x}\le -\frac{\eta }{x}-\frac{16\pi \partial _vr_2\Omega _2^{-2}}{x\partial _ur_2}\bigg (1+\frac{1}{\eta }\bigg )\Theta ^2. \end{aligned}$$

Applying Lemma 4.4, we have

$$\begin{aligned} \frac{\mathrm{d}\eta }{\mathrm{d}x}&\le -\frac{\eta }{x}-\frac{2}{x}\bigg (1+\frac{1}{\eta }\bigg )\bigg (\frac{1}{r_2}-\frac{1}{r_1}\bigg )(m_2-m_1)\nonumber \\&=-\frac{\eta }{x}+\frac{\eta }{x}\bigg (1+\frac{1}{\eta }\bigg )\bigg (\frac{r_2}{r_1}-1\bigg ). \end{aligned}$$
(4.15)

Using (4.10), we get

$$\begin{aligned} \delta = \frac{r_2-r_1}{r_2-(r_2-r_1)}\le \frac{r_2(u_0)-r_1(u_0)}{r_2(u)-(r_2(u_0)-r_1(u_0))}=\frac{\delta _0}{x(1+\delta _0)-\delta _0}. \end{aligned}$$

Combining the above with (4.15), we obtain

$$\begin{aligned} \frac{\mathrm{d}\eta }{\mathrm{d}x}\le \eta \bigg (\frac{\delta _0}{x^{{2}}(1+\delta _0)-{x}\delta _0}-\frac{1}{x}\bigg )+\frac{\delta _0}{x^{{2}}(1+\delta _0)-{x}\delta _0}. \end{aligned}$$

Defining \(g(x):=1-\frac{\delta _0}{x(1+\delta _0)-\delta _0}\) and \(f(x):=\frac{\delta _0}{x(1+\delta _0)-\delta _0}\), we obtain the following differential inequality:

$$\begin{aligned} \frac{\mathrm{d}\eta }{\mathrm{d}x}+\eta \frac{g(x)}{x}-\frac{f(x)}{x}\le 0. \end{aligned}$$

To solve this differential inequality, we multiply by an integrating factor then integrate with respect to x:

$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}x}\bigg (e^{-\int _x^1\frac{g(s)}{s}ds}\eta (x)\bigg )-e^{-\int _x^1\frac{g(s)}{s}ds}\frac{f(x)}{x}\le 0\\&\quad \implies \bigg [e^{-\int _{{x'}}^1\frac{g(s)}{s}ds}\eta (x')\bigg ]_{x'=x}^{x'=1}\le \int _x^1e^{-\int _{x'}^1\frac{g(s)}{s}ds}\frac{f}{x'}\mathrm{d}x'. \end{aligned}$$

We denote \(G(x):= \int _x^1\frac{g(s)}{s}ds\) and \(F(x):=\int _x^1e^{-G(x')}\frac{f}{x'}\mathrm{d}x'\). In this notation, we get

$$\begin{aligned} \eta _0-e^{-G(x)}\eta (x)\le F(x) \implies \eta (x)\ge e^{G(x)}\big (-F(x)+\eta _0\big ). \end{aligned}$$

Hence, in the region \([u_0,u_*]\times [v_1,v_2]\) free of trapped surfaces, we conclude that the following inequality holds:

$$\begin{aligned} \eta (x)\ge e^{G(x)}(-F(x)+\eta _0). \end{aligned}$$
(4.16)

Now, we compute explicit expressions for G(x) and F(x):

$$\begin{aligned} G(x)&= \int _x^1\frac{1}{s}-\frac{1}{s}\frac{\delta _0}{s(1+\delta _0)-\delta _0}ds\\&=\int _x^1\frac{1}{s}+\frac{1}{s}-\frac{1+\delta _0}{s(1+\delta _0)-\delta _0}ds\\&=\ln \bigg (\frac{s^2}{s(1+\delta _0)-\delta _0}\bigg )\bigg |^1_x = \ln \bigg (\frac{x(1+\delta _0)-\delta _0}{x^2}\bigg )\\ F(x)&= \int _x^1\frac{s^2}{s(1+\delta _0)-\delta _0}\frac{f}{s}ds = \int _x^1\frac{\delta _0s}{(s(1+\delta _0)-\delta _0)^2}ds\\&=\frac{\delta _0}{1+\delta _0}\int _x^1\frac{1}{s(1+\delta _0)-\delta _0}+\frac{\delta _0}{(s(1+\delta _0)-\delta _0)^2}ds\\&=\frac{\delta _0}{(1+\delta _0)^2}\ln \bigg (s(1+\delta _0)-\delta _0\bigg )\bigg |_x^1 - \frac{\delta _0^{{2}}}{(1+\delta _0)^2}\frac{1}{s(1+\delta _0)-\delta _0}\bigg |_x^1\\&=\frac{\delta _0}{(1+\delta _0)^2}\bigg (\ln \big (\frac{1}{x(1+\delta _0)-\delta _0}\big )+\delta _0\big (\frac{1}{x(1+\delta _0)-\delta _0}-1\big )\bigg ). \end{aligned}$$

Using the assumption that there is no trapped surface or MOTS, we have \(\eta (x)=\frac{2(m_2-m_1)}{r_2}\le \frac{2m_2}{r_2}<1\) for \(x\in [\frac{3\delta _0}{1+\delta _0},1]\). Rearranging (4.16) results in

$$\begin{aligned} \eta _0\le e^{-G(x)}\eta (x)+F(x)<e^{-G(x)}+F(x),\text { for all }x\in \bigg [\frac{3\delta _0}{1+\delta _0},1\bigg ]. \end{aligned}$$

In particular, we can substitute \(x = \frac{3\delta _0}{1+\delta _0}\) into the above equation and get

$$\begin{aligned} \eta _0< E(\delta _0) = \frac{\delta _0}{(1+\delta _0)^2}\bigg [\log \big (\frac{1}{2\delta _0}\big )+5-\delta _0\bigg ]. \end{aligned}$$

This gives us the desired contradiction. \(\square \)

1.2 A Special Case of Minkowskian Incoming Characteristic Initial Data

Prescribe Minkowskian data along \(v=v_1\), we can improve the lower bound required on \(\eta _0\) in Theorem 1.1.

Theorem 1.2. Assume that Minkowskian data are prescribed along \(v=v_1\) and require \(\phi (u,v_1)=0\). Suppose that the following lower bound on \(\eta _0\) holds:

$$\begin{aligned} \eta _0>\frac{9}{2}\delta _0, \end{aligned}$$

then there exist a MOTS or a trapped surface in \([u_0,u_*]\times [v_1,v_2]\subset \mathcal {R}\), i.e., \(\partial _vr\le 0\) at some point in \([u_0,u_*]\times [v_1,v_2]\).

Proof

(Theorem 1.3) In this special case, we have \(\phi _1\equiv 0\) and \(m_1 \equiv 0\). Equation (4.14) now reads:

$$\begin{aligned} \frac{\mathrm{d}\eta }{\mathrm{d}x} = -\frac{\eta }{x}-\frac{16\pi \partial _vr_2\Omega _2^{-2}}{x\partial _ur_2}r_2^2|\partial _u\phi _2|^2, \end{aligned}$$

and we also have

$$\begin{aligned} \Theta ^2 = r_2^2|\partial _u\phi _2|^2. \end{aligned}$$

Combining the above equations, followed by applying Lemma 4.4, we get:

$$\begin{aligned} \frac{\mathrm{d}\eta }{\mathrm{d}x}&= -\frac{\eta }{x}-\frac{16\pi \partial _vr_2\Omega _2^{-2}}{x\partial _ur_2}\Theta ^2 \le -\frac{\eta }{x}-\frac{2}{x}\bigg (\frac{1}{r_2}-\frac{1}{r_1}\bigg )(m_2-m_1)\\&=-\frac{\eta }{x}+\frac{\eta }{x}\bigg (\frac{r_2}{r_1}-1\bigg )\le -\frac{\eta }{x}+\frac{\eta }{x}\frac{\delta _0}{x(1+\delta _0)-\delta _0}. \end{aligned}$$

Integrating the above inequality:

$$\begin{aligned}&\int _x^1\frac{1}{\eta }\mathrm{d}\eta \le \int _x^1-\frac{1}{s}+\frac{1}{s}\frac{\delta _0}{s(1+\delta _0)-\delta _0}ds=\int _x^1-\frac{2}{s}+\frac{1+\delta _0}{s(1+\delta _0)-\delta _0}ds\\&\quad \implies \ln \bigg (\frac{\eta _0}{\eta (x)}\bigg )\le \ln \bigg (\frac{x^2}{x(1+\delta _0)-\delta _0}\bigg )\\&\quad \implies \eta _0\le \eta (x)\frac{x^2}{x(1+\delta _0)-\delta _0}. \end{aligned}$$

Under the assumption of no trapped surfaces or MOTS, we have \(\eta (x)<1\) for all \(x\in [\frac{3\delta _0}{1+\delta _0},1]\), hence

$$\begin{aligned} \eta _0\le \frac{x^2}{x(1+\delta _0)-\delta _0}{\text {, for all }x\in \bigg [\frac{3\delta _0}{1+\delta _0},1\bigg ].} \end{aligned}$$

In particular, choosing \(x=\frac{3\delta _0}{1+\delta _0}\) we have

$$\begin{aligned} \eta _0\le \frac{9}{2}\delta _0. \end{aligned}$$

This gives us the desired contradiction to the hypothesis. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, X., Lim, Z.F. Trapped Surface Formation for Spherically Symmetric Einstein–Maxwell-Charged Scalar Field System with Double Null Foliation. Ann. Henri Poincaré 23, 3159–3190 (2022). https://doi.org/10.1007/s00023-022-01168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-022-01168-y

Navigation