Skip to main content
Log in

Examples of Naked Singularity Formation in Higher-Dimensional Einstein-Vacuum Spacetimes

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

The vacuum Einstein equations in \(5+1\) dimensions are shown to admit solutions describing naked singularity formation in gravitational collapse from nonsingular asymptotically locally flat initial data that contain no trapped surface. We present a class of specific examples with topology \(\mathbb {R}^{3+1} \times S^2\). Thanks to the Kaluza–Klein dimensional reduction, these examples are constructed by lifting continuously self-similar solutions of the 4-dimensional Einstein-scalar field system with a negative exponential potential. The latter solutions are obtained by solving a 3-dimensional autonomous system of first-order ordinary differential equations with a combined analytic and numerical approach. Their existence provides a new test-bed for weak cosmic censorship in higher-dimensional gravity. In addition, we point out that a similar attempt of lifting Christodoulou’s naked singularity solutions of massless scalar fields fails to capture formation of naked singularities in \(4+1\) dimensions, due to a diverging Kretschmann scalar in the initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrahams, A.M., Evans, C.R.: Critical behavior and scaling in vacuum axisymmetric gravitational collapse. Phys. Rev. Lett. 70, 2980 (1993)

    Article  ADS  Google Scholar 

  2. An, X.: Formation of trapped surfaces from past null infinity. arXiv:1207.5271 (2012)

  3. An, X., Luk, J.: Trapped surfaces in vacuum arising dynamically from mild incoming radiation. Adv. Theor. Math. Phys. 21, 1 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, L., Metzger, J.: The area of horizons and the trapped region. Commun. Math. Phys. 290, 941 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bedjaoui, N., LeFloch, P.G., Martín-García, J.M., Novak, J.: Existence of naked singularities in the Brans–Dicke theory of gravitation. An analytical and numerical study. Class. Quantum Gravity 27, 245010 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bizoń, P., Chmaj, T., Schmidt, B.G.: Critical behavior in vacuum gravitational collapse in \(4+1\) dimensions. Phys. Rev. Lett. 95, 071102 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bizoń, P., Rostworowski, A.: Weakly turbulent instability of anti-de Sitter spacetime. Phys. Rev. Lett. 107, 031102 (2011)

    Article  ADS  Google Scholar 

  8. Bizoń, P., Wasserman, A.: Self-similar spherically symmetric wave maps coupled to gravity. Phys. Rev. D 62, 084031 (2000)

    Article  ADS  Google Scholar 

  9. Brady, P.R.: Self-similar scalar field collapse: naked singularities and critical behavior. Phys. Rev. D 51, 4168 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  10. Brady, P.R., Chambers, C.M., Gonçalves, S.M.C.V.: Phases of massive scalar field collapse. Phys. Rev. D 56, R6057 (1997)

    Article  ADS  Google Scholar 

  11. Bremer, M.S., Duff, M.J., Lü, H., Pope, C.N., Stelle, K.S.: Instanton cosmology and domain walls from M-theory and string theory. Nucl. Phys. B 543, 321 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Cai, R.-G., Wang, A.: Nonasymptotically AdS/dS solutions and their higher dimensional origins. Phys. Rev. D 70, 084042 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  13. Carr, B.J., Coley, A.A.: Self-similarity in general relativity. Class. Quantum Gravity 16, R31 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Carr, B.J., Coley, A.A.: The similarity hypothesis in general relativity. Gen. Relativ. Gravit. 37, 2165 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chan, K.C.K., Horne, J.H., Mann, R.B.: Charged dilaton black holes with unusual asymptotics. Nucl. Phys. B 447, 441 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Choptuik, M.W.: Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett. 70, 9 (1993)

    Article  ADS  Google Scholar 

  17. Christodoulou, D.: Examples of naked singularity formation in the gravitational collapse of a scalar field. Ann. Math. 140, 607 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Christodoulou, D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. 149, 183 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Christodoulou, D.: The Formation of Black Holes in General Relativity. Monographs in Mathematics. European Mathematical Society, Zürich (2009)

    Book  MATH  Google Scholar 

  20. Chruściel, P.T., Galloway, G.J., Pollack, D.: Mathematical general relativity: a sampler. Bull. Am. Math. Soc. 47, 567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Coley, A.A.: Dynamical Systems and Cosmology. Kluwer Academic Publishers, Dordrecht (2003)

    Book  MATH  Google Scholar 

  22. Conte, R., Musette, M.: The Painlevé Handbook. Springer, Dordrecht (2008)

    MATH  Google Scholar 

  23. Dafermos, M.: On naked singularities and the collapse of self-gravitating Higgs fields. Adv. Theor. Math. Phys. 9, 575 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dafermos, M.: The Evolution Problem in General Relativity. In: Current Developments in Mathematics, 2008, pp. 1–66. Somerville, MA (2009)

  25. Dafermos, M.: The formation of black holes in general relativity [after D. Christodoulou]. Asterisque 352 (2013)

  26. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. In: Clay Mathematics Proceedings, vol. 17, pp. 97–205. American Mathematical Society, Providence, RI (2013)

  27. Duff, M.J., Nilsson, B.E.W., Pope, C.N.: Kaluza–Klein supergravity. Phys. Rep. 130, 1 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Emparan, R., Reall, H.S.: Black holes in higher dimensions. Living Rev. Relativ. 11, 6 (2008)

    Article  ADS  MATH  Google Scholar 

  29. Feinstein, A.: Formation of a black string in a higher dimensional vacuum gravitational collapse. Phys. Lett. A 372, 4337 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Faraoni, V., Gunzig, E., Nardone, P.: Conformal transformations in classical gravitational theories and in cosmology. Fund. Cosmic Phys. 20, 121 (1999)

    ADS  Google Scholar 

  31. Figueras, P., Kunesch, M., Tunyasuvunakool, S.: End point of black ring instabilities and the weak cosmic censorship conjecture. Phys. Rev. Lett. 116, 071102 (2016)

    Article  ADS  Google Scholar 

  32. Figueras, P., Kunesch, M., Lehner, L., Tunyasuvunakool, S.: End point of the ultraspinning instability and violation of cosmic censorship. Phys. Rev. Lett. 118, 151103 (2017)

    Article  ADS  Google Scholar 

  33. Frolov, A.V.: Is it really naked? On cosmic censorship in string theory. Phys. Rev. D 70, 104023 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  34. Galloway, G.J.: Rigidity of marginally trapped surfaces and the topology of black holes. Commun. Anal. Geom. 16, 217 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Galloway, G.J., Schoen, R.: A generalization of Hawking’s black hole topology theorem to higher dimensions. Commun. Math. Phys. 266, 571 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Garfinkle, D.: Gravitational collapse in anti de Sitter space. Phys. Rev. D 70, 104015 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  37. Goldwirth, D.S., Piran, T.: Gravitational collapse of massless scalar field and cosmic censorship. Phys. Rev. D 36, 3575 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  38. Gregory, R., Laflamme, R.: Black strings and p-branes are unstable. Phys. Rev. Lett. 70, 2837 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Gundlach, C.: Understanding critical collapse of a scalar field. Phys. Rev. D 55, 695 (1997)

    Article  ADS  Google Scholar 

  40. Gundlach, C., Martín-García, J.M.: Critical phenomena in gravitational collapse. Living Rev. Relativ. 10, 5 (2007)

    Article  ADS  MATH  Google Scholar 

  41. Gutperle, M., Kraus, P.: Numerical study of cosmic censorship in string theory. J. High Energy Phys. 04, 024 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  42. Halliwell, J.J.: Scalar fields in cosmology with an exponential potential. Phys. Lett. B 185, 341 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  43. Hawley, S.H., Choptuik, M.W.: Boson stars driven to the brink of black hole formation. Phys. Rev. D 62, 104024 (2000)

    Article  ADS  Google Scholar 

  44. Hertog, T., Horowitz, G.T., Maeda, K.: Generic cosmic-censorship violation in anti-de Sitter space. Phys. Rev. Lett. 92, 131101 (2004)

    Article  ADS  Google Scholar 

  45. Hertog, T., Horowitz, G.T., Maeda, K.: Negative energy in string theory and cosmic censorship violation. Phys. Rev. D 69, 105001 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  46. Hirschmann, E.R., Wang, A., Wu, Y.: Collapse of a scalar field in \(2+1\) gravity. Class. Quantum Gravity 21, 1791 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Honda, E.P., Choptuik, M.W.: Fine structure of oscillons in the spherically symmetric \(\varphi ^4\) Klein–Gordon model. Phys. Rev. D 65, 084037 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  48. Horowitz, G.T. (ed.): Black Holes in Higher Dimensions. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  49. Klainerman, S., Luk, J., Rodnianski, I.: A fully anisotropic mechanism for formation of trapped surfaces in vacuum. Invent. Math. 198, 1 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Klainerman, S., Rodnianski, I.: On the formation of trapped surfaces. Acta Math. 208, 211 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Langfelder, P., Mann, R.B.: A note on spherically symmetric naked singularities in general dimension. Class. Quantum Gravity 22, 1917 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Lehner, L., Pretorius, F.: Black strings, low viscosity fluids, and violation of cosmic censorship. Phys. Rev. Lett. 105, 101102 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  53. Li, J., Yu, P.: Construction of Cauchy data of vacuum Einstein field equations evolving to black holes. Ann. Math. 181, 699 (2014)

    MathSciNet  MATH  Google Scholar 

  54. Luk, J., Rodnianski, I.: Nonlinear interactions of impulsive gravitational waves for the vacuum Einstein equations. arXiv:1301.1072 (2013)

  55. Maartens, R., Koyama, K.: Brane-world gravity. Living Rev. Relativ. 13, 5 (2010)

    Article  ADS  MATH  Google Scholar 

  56. Martín-García, J.M., Gundlach, C.: Global structure of Choptuik’s critical solution in scalar field collapse. Phys. Rev. D 68, 024011 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  57. Mignemi, S., Wiltshire, D.L.: Spherically symmetric solutions in dimensionally reduced spacetimes. Class. Quantum Gravity 6, 987 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Overduin, J.P., Wesson, P.S.: Kaluza–Klein gravity. Phys. Rep. 283, 303 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  59. Paetz, T., Simon, W.: Marginally outer trapped surfaces in higher dimensions. Class. Quantum Gravity 30, 235005 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Penrose, R.: Gravitational collapse: the role of general relativity. Riv. Nuovo Cim. 1, 252 (1969)

    ADS  Google Scholar 

  61. Penrose, R.: Gravitational collapse: The role of general relativity. Gen. Rel. Grav. 34, 1141 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Penrose, R.: The question of cosmic censorship. J. Astrophys. Astron. 20, 233 (1999)

    Article  ADS  Google Scholar 

  63. Poletti, S.J., Wiltshire, D.L.: Global properties of static spherically symmetric charged dilaton spacetimes with a Liouville potential. Phys. Rev. D 50, 7260 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  64. Reiterer, M., Trubowitz, E.: Strongly focused gravitational waves. Commun. Math. Phys. 307, 275 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Rendall, A.D.: The nature of spacetime singularities. arXiv:gr-qc/0503112 (2005)

  66. Rendall, A.D., Velázquez, J.J.L.: A class of dust-like self-similar solutions of the massless Einstein–Vlasov system. Ann. Henri Poincaré 12, 919 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Senovilla, J.M.M.: Trapped surfaces. Int. J. Mod. Phys. D 20, 2139 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Senovilla, J.M.M.: Trapped surfaces, horizons and exact solutions in higher dimensions. Class. Quantum Gravity 19, L113 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Townsend, P.K.: Quintessence from M-theory. J. High Energy Phys. 11, 042 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  70. Wald, R.M.: Gravitational collapse and cosmic censorship. arXiv:gr-qc/9710068 (1997)

  71. Wang, A.: Critical collapse of a cylindrically symmetric scalar field in four-dimensional Einstein’s theory of gravity. Phys. Rev. D 68, 064006 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  72. Zhang, X., Lü, H.: Exact black hole formation in asymptotically (A)dS and flat spacetimes. Phys. Lett. B 736, 455 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Zhang, X., Lü, H.: Critical behavior in a massless scalar field collapse with self-interacting potential. Phys. Rev. D 91, 044046 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Zhang.

Additional information

Communicated by James A. Isenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, X., Zhang, X. Examples of Naked Singularity Formation in Higher-Dimensional Einstein-Vacuum Spacetimes. Ann. Henri Poincaré 19, 619–651 (2018). https://doi.org/10.1007/s00023-017-0631-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0631-9

Navigation