Skip to main content
Log in

Global Regular Null Hypersurfaces in a Perturbed Schwarzschild Black Hole Exterior

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

The spherically symmetric null hypersurfaces in a Schwarzschild spacetime are smooth away from the singularities and foliate the spacetime. We prove the existence of more general foliations by null hypersurfaces without the spherical symmetry condition. In fact we also relax the spherical symmetry of the ambient spacetime and prove a more general result: in a perturbed Schwarzschild spacetime (not necessary being vacuum), nearly round null hypersurfaces can be extended regularly to the past null infinity, thus there exist many foliations by regular null hypersurfaces in the exterior region of a perturbed Schwarzschild black hole. A significant point of the result is that the ambient spacetime metric is not required to be differentiable in all directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bieri, L.: An Extension of the Stability Theorem of the Minkowski Space in General Relativity. DISS. ETH Nr. 17178 (2007). https://doi.org/10.3929/ethz-a-005463083

  2. Bieri, L.: Extensions of the Stability Theorem of the Minkowski Space in General Relativity. Solutions of the Einstein Vacuum Equations. AMS/IP Studies in Advanced Mathematics, 45. American Mathematical Society, Providence, RI; International Press, Cambridge, MA (2009)

  3. Bieri, L.: An extension of the stability theorem of the Minkowski space in general relativity. J. Differential Geom. 86(1), 17–70 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, 41. Princetion University Press, Princeton, NJ (1993)

    MATH  Google Scholar 

  5. Eddington, A.S.: A comparison of Whitehead’s and Einstein’s formulas. Nature 113, 192 (1924)

    Article  ADS  Google Scholar 

  6. Finkelstein, D.: Past-future asymmetry of the gravitational field of a point particle. Phys. Rev. 110, 965–967 (1958)

    Article  ADS  MATH  Google Scholar 

  7. Kruskal, M.D.: Maximal extension of the Schwarzschild metric. Phys. Rev. 119, 1743–1745 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Lemaître, G.: L’univers en expansion. Ann. Soc. Sci. Bruxelles I A 53, 51–85 (1933)

    MATH  Google Scholar 

  9. Le, P.: The perturbation theory of null hypersurfaces and the weak null Penrose inequality. DISS. ETH Nr. 25387 (2018). https://doi.org/10.3929/ethz-b-000334917

  10. Le, P.: Marginal tubes and foliations by marginal surfaces. Class. Quantum Grav. 39(7) (2022). paper no. 075025, 19pp

  11. Luk, J., Rodnianski, I.: Local propagation of impulsive gravitational waves. Comm. Pure Appl. Math. 68(4), 511–624 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Synge, J.L.: The gravitational field of a particle. Proc. R. Irish Acad. A 53, 83–114 (1950)

    MathSciNet  Google Scholar 

  13. Szekeres, G.: On the singularities of a Riemannian manifold. Publ. Mat. Debrecen 7, 285–301 (1960)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper relaxes the condition of the global existence result of null hypersurfaces in a perturbed Schwarzschild black hole exterior obtained in the author’s thesis [9]. The author is grateful to Demetrios Christodoulou for his generous guidance. The author also thanks Alessandro Carlotto and Lydia Bieri for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengyu Le.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proof of Lemma 3.5: Gronwall’s inequality

Appendix A. Proof of Lemma 3.5: Gronwall’s inequality

We consider the solution of the following propagation equation

$$\begin{aligned} \partial _s {}^{s}{\underline{f}}+ {}^{s}X^i \partial _i {}^{s}{\underline{f}}= {}^{s}{{\mathrm {re}}}\end{aligned}$$
(A.1)

and obtain estimates for \({}^{s}{\underline{f}}\) by integrating the equation. We first derive the propagation equation for the rotational derivatives of \({}^{s}{\underline{f}}\). Let \(R_i, i=1,2,3\) be the rotational vector fields on the unit round sphere \(({\mathbb {S}}^2, {\mathop {g}\limits ^{\circ }})\). In the 3-dimensional Euclidean space,

$$\begin{aligned} R_i = \sum _{j,k}\epsilon _{ijk} x^j \partial _k. \end{aligned}$$

Differentiating equation (A.1), we get

$$\begin{aligned} \partial _s R_i {}^{s}{\underline{f}}+ {}^{s}X\left( R_i {}^{s}{\underline{f}}\right) + \left[ R_i, {}^{s}X\right] {}^{s}{\underline{f}}= R_i {}^{s}{{\mathrm {re}}}. \end{aligned}$$

For the higher order derivatives, we have

$$\begin{aligned} \partial _s \left( R_{i_1} \cdots R_{i_m} {}^{s}{\underline{f}}\right) + {}^{s}X\left( R_{i_1} \cdots R_{i_m} {}^{s}{\underline{f}}\right) = {}^{R_{i_1}, \cdots , R_{i_m},s}{\mathrm {re}}, \end{aligned}$$
(A.2)

where

$$\begin{aligned} {}^{R_{i_1}, \cdots , R_{i_m},s}{\mathrm {re}}&= R_{i_1} \cdots R_{i_n} {}^{s}{{\mathrm {re}}},\\&\quad - \sum _{\begin{array}{c} \{l_1,\cdots , l_s\}\cup \{k_1,\cdots ,k_{n-s}\} \\ =\{1,\cdots , m\}, \\ l_1<\cdots< l_s, \\ k_1< \cdots < k_{n-s}, \\ s\le m-1 \end{array}} [ R_{i_{k_1}}, \cdots , R_{i_{k_{n-s}}} , {}^{s}X] \left( R_{i_{l_1}} \cdots R_{i_{l_s}} {}^{s}{\underline{f}}\right) \end{aligned}$$

and

$$\begin{aligned} {[} R_{i_{k_1}}, \cdots , R_{i_{k_{n-s}}} , {}^{s}X] = {\mathcal {L}}_{R_{i_{k_1}}}\cdots {\mathcal {L}}_{R_{i_{k_{n-s}}}}{}^{s}X. \end{aligned}$$

The proof of Lemma 3.5 relies on the following lemma on the diffeomorphisms generated by the vector field \({}^{s}X\).

Lemma 5.3

Define the one parameter family of diffeomorphisms \(\left\{ \varphi _s \right\} \) generated by \({}^{s}X\), i.e.

$$\begin{aligned} \varphi _s: {\mathbb {S}}^2 \rightarrow {\mathbb {S}}^2, \quad \frac{\mathrm {d}}{\mathrm {d}s} \varphi _s(\vartheta ) = {}^{s}X(\varphi _s(\vartheta )), \quad \varphi _{s=0}=\mathrm {Id} \end{aligned}$$

We define the push forward metric \(g_s\) of \({\mathop {g}\limits ^{\circ }}\) via \(\varphi _s\)

$$\begin{aligned} g_s=(\varphi _s)_* {\mathop {g}\limits ^{\circ }}, \quad \mathrm {dvol}_{g_s} = (\varphi _s)_* \mathrm {dvol}_{{\mathop {g}\limits ^{\circ }}}. \end{aligned}$$

Then there exists a family of functions \(\left\{ \phi _s \right\} \) such that

$$\begin{aligned} \mathrm {dvol}_{g_s} = \phi _s \mathrm {dvol}_{{\mathop {g}\limits ^{\circ }}}, \end{aligned}$$

and \(\phi _s\) satisfies the equation

$$\begin{aligned} \partial _s \phi _s + {}^{s}X^i \partial _i \phi _s = - \phi _s {\mathop {\mathrm {div}}\limits ^{\circ }}{}^{s}X, \quad \left( \partial _s + {}^{s}X^i \partial _i \right) \log \phi _s = - {\mathop {\mathrm {div}}\limits ^{\circ }}{}^{s}X. \end{aligned}$$
(A.3)

Assume that

$$\begin{aligned} \sup _{{\mathbb {S}}^2} \big \vert {\mathop {\mathrm {div}}\limits ^{\circ }}{}^{s}X\big \vert \le \frac{k r_0}{(r_0+t)^2}, \end{aligned}$$

then

$$\begin{aligned} \big \vert \log \phi _s \big \vert \le k . \end{aligned}$$

Proof

It is sufficient to prove equation (A.3). It follows from

$$\begin{aligned} {\mathcal {L}}_{{}^{s}X} \mathrm {dvol}_{g_s} = {\mathcal {L}}_{{}^{s}X} \left( \phi _s \mathrm {dvol}_{{\mathop {g}\limits ^{\circ }}} \right) =0. \end{aligned}$$

\(\square \)

Applying the above lemma, we prove the \(L^p\) estimate for \({}^{s}{\underline{f}}\).

Lemma 5.4

Under the assumptions of Lemma 3.5, there exists a constant c depending on p such that

$$\begin{aligned} \big \Vert {}^{s}{\underline{f}}\big \Vert _{L^p} \le \exp (c k ) \left\{ \big \Vert {}^{s=0}{\underline{f}} \big \Vert _{L^p} + \int _0^s \big \Vert {}^{s=t}{\mathrm {re}} \big \Vert _{L^p} \mathrm {d}t \right\} . \end{aligned}$$

Proof

We use the one parameter family defined in Lemma 5.3. Denote the pullbacks of \({}^{s}{\underline{f}}\) and \({}^{s}{{\mathrm {re}}}\) via \(\varphi _s\) by \({}^{s}{\underline{f}}_{*}, {}^{s}{{\mathrm {re}}}_{*}\),

$$\begin{aligned} {}^{s}{\underline{f}}_{*} \left( \vartheta \right) = \varphi _s^* ({}^{s}{\underline{f}}) (\vartheta ) = {}^{s}{\underline{f}}\circ \varphi _s (\vartheta ), \quad {}^{s}{{\mathrm {re}}}_{*} \left( \vartheta \right) = \varphi _s^* ({}^{s}{{\mathrm {re}}}) (\vartheta ) = {}^{s}{{\mathrm {re}}}\circ \varphi _s (\vartheta ). \end{aligned}$$

Then we have the propagation equation

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}s} {}^{s}{\underline{f}}_{*}(\vartheta ) = {}^{s}{{\mathrm {re}}}_{*} (\vartheta ). \end{aligned}$$

Therefore for \(\big \Vert {}^{s}{\underline{f}}_{*} \big \Vert _{L^p}\), we have

$$\begin{aligned} \big \vert \frac{\mathrm {d}}{\mathrm {d}s} \left( \big \Vert {}^{s}{\underline{f}}_{*} \big \Vert _{L^p} \right) ^p \big \vert =&\big \vert p \int _{{\mathbb {S}}^2} {}^{s}{{\mathrm {re}}}_{*} \cdot \left( {}^{s}{\underline{f}}_{*} \right) ^{p-1} \mathrm {dvol}_{{\mathop {g}\limits ^{\circ }}} \big \vert \le p \big \Vert {}^{s}{{\mathrm {re}}}_{*} \big \Vert _{L^p} \cdot \big \Vert {}^{s}{\underline{f}}_{*} \big \Vert _{L^p}^{p-1} \end{aligned}$$

Therefore we have

$$\begin{aligned} \big \Vert {}^{s}{\underline{f}}_{*} \big \Vert _{L^p} \le \big \Vert {}^{s=0}{\underline{f}} \big \Vert _{L^p} + \int _0^s \big \Vert {}^{s=t}{\mathrm {re}}_{*} \big \Vert _{L^p} \mathrm {d}t. \end{aligned}$$

Between \(L^p\) norms \(\big \Vert {}^{s}{\underline{f}}_{*} \big \Vert _{L^p}\) and \(\big \Vert {}^{s}{\underline{f}}\big \Vert _{L^p}\), we have that

$$\begin{aligned} \int _{{\mathbb {S}}^2} \left( {}^{s}{\underline{f}}_{*} \right) ^p \mathrm {dvol}_{{\mathop {g}\limits ^{\circ }}}&= \int _{{\mathbb {S}}^2} \left( (\varphi _s)^{*} {}^{s}{\underline{f}}\right) ^p \mathrm {dvol}_{{\mathop {g}\limits ^{\circ }}} = \int _{{\mathbb {S}}^2} \left( {}^{s}{\underline{f}}\right) ^p \mathrm {dvol}_{\left( \varphi _s \right) _{*} {\mathop {g}\limits ^{\circ }}} \\&= \int _{{\mathbb {S}}^2} \left( {}^{s}{\underline{f}}\right) ^p \mathrm {dvol}_{g_s} = \int _{{\mathbb {S}}^2} \left( {}^{s}{\underline{f}}\right) ^p \phi _s \mathrm {dvol}_{{\mathop {g}\limits ^{\circ }}}. \end{aligned}$$

Then by Lemma 5.3, we have

$$\begin{aligned} \exp (-c k) \big \Vert {}^{s}{\underline{f}}\big \Vert _{L^p} \le \big \Vert {}^{s}{\underline{f}}_{*} \big \Vert _{L^p} \le \exp (c k) \big \Vert {}^{s}{\underline{f}}\big \Vert _{L^p} \end{aligned}$$

since we have the \(L^{\infty }\) estimate of \({\mathop {\mathrm {div}}\limits ^{\circ }}{}^{s}X\) from \(\big \Vert {}^{s}X\big \Vert ^{n+1,p}\) by the Sobolev embedding. Similarly, for \(\big \Vert {}^{s}{{\mathrm {re}}}_{*} \big \Vert _{L^p}\) and \(\big \Vert {}^{s}{{\mathrm {re}}}\big \Vert _{L^p}\), they are also comparable with the constant \(\exp (c k)\). Hence

$$\begin{aligned} \big \Vert {}^{s}{\underline{f}}\big \Vert _{L^p} \le \exp (c k) \left\{ \big \Vert {}^{s=0}{\underline{f}} \big \Vert _{L^p} + \int _0^s \big \Vert {}^{s=t}{\mathrm {re}} \big \Vert _{L^p} \mathrm {d}t \right\} . \end{aligned}$$

\(\square \)

Therefore Lemma 3.5 follows from equation (A.2) and lemma 5.4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, P. Global Regular Null Hypersurfaces in a Perturbed Schwarzschild Black Hole Exterior. Ann. PDE 8, 13 (2022). https://doi.org/10.1007/s40818-022-00127-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-022-00127-4

Navigation