Skip to main content

Advertisement

Log in

Shrew's venom quickly causes circulation disorder, analgesia and hypokinesia

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Multiple representatives of eulipotyphlan mammals such as shrews have oral venom systems. Venom facilitates shrews to hunt and/or hoard preys. However, little is known about their venom composition, and especially the mechanism to hoard prey in comatose states for meeting their extremely high metabolic rates. A toxin (BQTX) was identified from venomous submaxillary glands of the shrew Blarinella quadraticauda. BQTX is specifically distributed and highly concentrated (~ 1% total protein) in the organs. BQTX shares structural and functional similarities to toxins from snakes, wasps and snails, suggesting an evolutional relevancy of venoms from mammalians and non-mammalians. By potentiating thrombin and factor-XIIa and inhibiting plasmin, BQTX induces acute hypertension, blood coagulation and hypokinesia. It also shows strong analgesic function by inhibiting elastase. Notably, the toxin keeps high plasma stability with a 16-h half-life in-vivo, which likely extends intoxication to paralyze or immobilize prey hoarded fresh for later consumption and maximize foraging profit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available on request from the corresponding author.

Code availability

Not applicable.

References

  1. Fox RC, Scott CS (2006) First evidence of a venom delivery apparatus in extinct mammals. Nature 435(7045):1091–1093. https://doi.org/10.1038/nature03646

    Article  CAS  Google Scholar 

  2. Rode-Margono J, Nekaris K (2015) Cabinet of curiosities: venom systems and their ecological function in mammals, with a focus on primates. Toxins 7(7):2639–2658. https://doi.org/10.3390/toxins7072639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ligabue-Braun R, Verli H (2012) Venomous mammals: a review. Toxicon 59(7):680–695. https://doi.org/10.1016/j.toxicon.2012.02.012

    Article  CAS  PubMed  Google Scholar 

  4. Dufton MJ (1992) Venomous mammals. Pharmacol Therapeut 53(2):199–215. https://doi.org/10.1016/0163-7258(92)90009-O

    Article  CAS  Google Scholar 

  5. Bowen CV, Debay D (2013) In Vivo detection of human TRPV6-rich tumors with anti-cancer peptides derived from soricidin. PLoS ONE 8(3):e58866. https://doi.org/10.1371/journal.pone.0058866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Whittington CM, Papenfuss AT (2010) Novel venom gene discovery in the platypus. Genome Biol 11(9):R95. https://doi.org/10.1186/gb-2010-11-9-r95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Torres AM, Bansal P (2014) Structure and antimicrobial activity of platypus ‘intermediate’ defensin-like peptide. FEBS Lett 588(9):1821–1826. https://doi.org/10.1016/j.febslet.2014.03.044

    Article  CAS  PubMed  Google Scholar 

  8. Grow NB, Nekaris KAI (2015) Does toxic defence in Nycticebus spp. relate to ectoparasites? The lethal effects of slow loris venom on arthropods. Toxicon 95(1):1–5. https://doi.org/10.1016/j.toxicon.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  9. Nekaris KAI, Moore RS (2013) Mad, bad and dangerous to know: the biochemistry, ecology and evolution of slow loris venom. J Venom Anim Toxins 19(1):21. https://doi.org/10.1186/1678-9199-19-21

    Article  Google Scholar 

  10. Ma D, Mizurini DM (2013) Desmolaris, a novel factor XIa anticoagulant from the salivary gland of the vampire bat (Desmodus rotundus) inhibits inflammation and thrombosis in vivo. Blood 122(25):4094–4106. https://doi.org/10.1182/blood-2013-08-517474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Low D, Sunagar K (2013) Dracula’s children: molecular evolution of vampire bat venom. J Proteomics 89(26):95–111. https://doi.org/10.1016/j.jprot.2013.05.034

    Article  CAS  PubMed  Google Scholar 

  12. Folins KE, Müller J (2007) Canine grooves: morphology, function, and relevance to venom. J Vertebr Paleontol 27(2):547–551. https://doi.org/10.1671/0272-4634(2007)27[547:CGMFAR]2.0.CO;2

    Article  Google Scholar 

  13. Ariano-Sánchez D (2008) Envenomation by a wild Guatemalan Beaded LizardHeloderma horridum charlesbogerti. Clin Toxicol 46(9):897–899. https://doi.org/10.1080/15563650701733031

    Article  CAS  Google Scholar 

  14. Kaila F, Kaila E (2013) Evolution of venom across extant and extinct eulipotyphlans L’évolution du venin chez les eulipotyphles modernes et éteints. CR Palevol 12(7):531–542. https://doi.org/10.1016/j.crpv.2013.05.004

    Article  Google Scholar 

  15. Nicholas RC, Daniel P (2019) Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals. Proc Natl Acad Sci USA 116(15):25745–25755. https://doi.org/10.1073/pnas.1906117116

    Article  CAS  Google Scholar 

  16. Kita M, Nakamura Y (2004) Blarina toxin, a mammalian lethal venom from the short-tailed shrew Blarina brevicauda: Isolation and characterization. Proc Natl Acad Sci USA 101(20):7542–7547. https://doi.org/10.1073/pnas.0402517101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kowalski K, Rychlik L (2008) The role of venom in the hunting and hoarding of prey differing in body size by the Eurasian water shrew, Neomys fodiens. J Mammal 99(2):351–362. https://doi.org/10.1093/jmammal/gyy013

    Article  Google Scholar 

  18. Kita M, Okumura Y (2005) Purification and characterisation of blarinasin, a new tissue kallikrein-like protease from the short-tailed shrew Blarina brevicauda: comparative studies with blarina toxin. Biol Chem. https://doi.org/10.1515/bc.2005.022

    Article  PubMed  Google Scholar 

  19. Churchfield S (1990) The natural history of shrews. Q Rev Biol 66(4):505–506. https://doi.org/10.1086/417393

    Article  Google Scholar 

  20. Taylor JRE (1998) Evolution of energetic strategies in shrews. In: Jan MW (ed) Evolution of shrews, 1st edn. Bialowieza, Mammal Research Institute, pp 309–346

    Google Scholar 

  21. Hamilton WJ (1930) The food of the soricidae. J Mammal 11(1):26–39. https://doi.org/10.2307/1373782

    Article  Google Scholar 

  22. Hotopp KP (2002) Land snails and soil calcium in central appalachian mountain forest. Southeastern Nat 1(1):27–44. https://doi.org/10.1656/1528-7092(2002)001[0027:lsasci]2.0.co;2

    Article  Google Scholar 

  23. Dehnel A (1960) Aufspeicherung von Nahrungsvorräten durch Sorex araneus Linnaeus 1758; Gromadzenie zapasów pożywienia u Sorex araneus Linnaeus 1758. Acta Theriol 4:265–268. https://doi.org/10.4098/AT.arch.60-14

    Article  Google Scholar 

  24. Martin IG (1984) Factors affecting food hoarding in the short-tailed shrew Blarina brevicauda. Mammalia 48(1):65–72. https://doi.org/10.1515/mamm.1984.48.1.65

    Article  Google Scholar 

  25. Rychlik L (2002) Prey size, prey nutrition, and food handling by shrews of different body sizes. Behav Ecol 13(2):216–223. https://doi.org/10.1093/beheco/13.2.216

    Article  Google Scholar 

  26. Jiang XL, Wang YX (2003) A review of the systematics and distribution of Asiatic short-tailed shrews, genus Blarinella (Mammalia: Soricidae). Mamm Biol 68(4):193–204. https://doi.org/10.1078/1616-5047-00085

    Article  Google Scholar 

  27. He K, Li YJ (2010) A multi-locus phylogeny of Nectogalini shrews and influences of the paleoclimate on speciation and evolution. Mol Phylogenet Evol 56(2):734–746. https://doi.org/10.1016/j.ympev.2010.03.039

    Article  PubMed  Google Scholar 

  28. Martin IG (1982) Venom of the short-tailed shrew (Blarina brevicauda) as an insect immobilizing agent. J Mammal 5(1):189–192. https://doi.org/10.2307/1380494

    Article  Google Scholar 

  29. Arinos M, Richardson M (2007) Purification and properties of a coagulant thrombin-like enzyme from the venom of Bothrops leucurus. Comp Biochem Physiol A Mol Integr Physiol 146(4):565–575. https://doi.org/10.1016/j.cbpa.2005.12.033

    Article  CAS  Google Scholar 

  30. Zhang Z, Lan G (2014) A potent anti-thrombosis peptide (vasotab TY) from horsefly salivary glands. Int J Biochem Cell Biol 54(8):83–88. https://doi.org/10.1016/j.biocel.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  31. Yue M, Luo D (2015) Misshapen/NIK-related Kinase (MINK1) is involved in platelet function, hemostasis and thrombus formation. Blood 127(7):927–937. https://doi.org/10.1182/blood-2015-07-659185

    Article  CAS  PubMed  Google Scholar 

  32. Xia Q, Wang X (2012) Inhibition of platelet aggregation by curdione from Curcuma wenyujin essential Oil. Thromb Res 130(3):409–414. https://doi.org/10.1016/j.thromres.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  33. Yang S, Xiao Y (2013) Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc Natl Acad Sci USA 110(43):17534–17539. https://doi.org/10.1073/pnas.1306285110

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fernández J, Gutiérrez J (2016) Characterization of a novel snake venom component: Kazal-type inhibitor-like protein from the arboreal pitviper Bothriechis schlegelii. Biochimie 125:83–90. https://doi.org/10.1016/j.biochi.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  35. Watkins M, Hillyard DR (2006) Genes expressed in a turrid venom duct: divergence and similarity to conotoxins. J Mol Evol 62(3):247–256. https://doi.org/10.1007/s00239-005-0010-x

    Article  CAS  PubMed  Google Scholar 

  36. Yan Z, Fang Q (2016) Insights into the venom composition and evolution of an endoparasitoid wasp by combining proteomic and transcriptomic analyses. Sci Rep 6(1):19604. https://doi.org/10.1038/srep19604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ablondi FB, Hagan JJ (1959) Inhibition of plasmin, trypsin and the streptokinase-activated fibrinolytic system by 6-aminocaproic acid. Arch Biochem Biophys 82(1):153–160. https://doi.org/10.1016/0003-9861(59)90100-6

    Article  CAS  PubMed  Google Scholar 

  38. Vicuña L, Strochlic DE (2015) The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell–derived leukocyte elastase. Nat Med 21(5):518–523. https://doi.org/10.1038/nm.3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bode W (1992) Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem 204(2):433–451. https://doi.org/10.1111/j.1432-1033.1992.tb16654.x

    Article  CAS  PubMed  Google Scholar 

  40. Waisberg M, Mizurini DM (2014) Plasmodium falciparum infection induces expression of a mosquito salivary protein (Agaphelin) that targets neutrophil function and inhibits thrombosis without impairing hemostasis. PLoS Pathog 10(9):e1004338. https://doi.org/10.1371/journal.ppat.1004338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aaron M, LeBeau PS (2009) Prostate-specific antigen is a “chymotrypsin-like” serine protease with unique P1 substrate specificity. Biochemistry 48(15):3490–3496. https://doi.org/10.1021/bi9001858

    Article  CAS  Google Scholar 

  42. Zheng LS, Cao Y (2016) SPINK6 promotes metastasis of nasopharyngeal carcinoma via binding and activation of epithelial growth factor receptor. Cancer Res 77(2):579–589

    Article  Google Scholar 

  43. Pierre LS, Earl ST (2008) Common evolution of waprin and kunitz-like toxin families in Australian venomous snakes. Cell Mol Life Sci 65(24):4039–4054. https://doi.org/10.1007/s00018-008-8573-5

    Article  CAS  Google Scholar 

  44. Viala VL, Hildebrand D (2005) Venomics of the Australian eastern brown snake (Pseudonaja textilis): detection of new venom proteins and splicing variants. Toxicon 107:252–265. https://doi.org/10.1016/j.toxicon.2015.06.005

    Article  CAS  Google Scholar 

  45. Cheng AC (1840) Tsai IH (2014) Functional characterization of a slow and tight-binding inhibitor of plasmin isolated from Russell's viper venom. Biochim Biophys Acta Gen Subj 1:153–159. https://doi.org/10.1016/j.bbagen.2013.08.019

    Article  CAS  Google Scholar 

  46. Wan H, Lee KS (2013) A spider-derived Kunitz-type serine protease inhibitor that acts as a plasmin inhibitor and an elastase inhibitor. PLoS One 8(1): https://doi.org/10.1371/journal.pone.0053343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Choo YM, Lee KS (2012) Antifibrinolytic Role of a Bee Venom Serine Protease Inhibitor That Acts as a Plasmin Inhibitor. PLoS ONE. 7(2): https://doi.org/10.1371/journal.pone.0032269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Söllner C, Mentele R, Eckerskorn C, Fritz H, Sommerhoff CP (2010) Isolation and characterization of hirustasin, an antistasin-type serine-proteinase inhibitor from the medical leech Hirudo medicinalis. Eur J Biochem 219(3):937–943. https://doi.org/10.1111/j.1432-1033.1994.tb18575.x

    Article  Google Scholar 

  49. Myles T, Church FC (1998) Role of thrombin anion-binding exosite-I in the formation of thrombin-serpin complexes. J Biol Chem 273(47):31203–31208. https://doi.org/10.1074/jbc.273.47.31203

    Article  CAS  PubMed  Google Scholar 

  50. Tang X, Zhang Z (2020) Transferrin plays a central role in coagulation balance by interacting with clotting factors. Cell Res 30(2):119–132. https://doi.org/10.1101/646075

    Article  CAS  PubMed  Google Scholar 

  51. Tang X, Fang M (2020) Iron-deficiency and estrogen are associated with ischemic stroke by up-regulating transferrin to induce hypercoagulability. Cir Res 127(5):651–663. https://doi.org/10.1161/CIRCRESAHA.119.316453

    Article  CAS  Google Scholar 

  52. Lagos F, Elgheznawy A (2021) Secreted modular calcium binding protein 1 binds/activates thrombin to account for platelet hyper-reactivity in diabetes. Blood 137(12):1641–1651. https://doi.org/10.1182/blood.2020009405

    Article  CAS  Google Scholar 

  53. Robert EW (2008) The short-tailed shrew and field mouse predation. J Mammal 25(4):359–364. https://doi.org/10.2307/1374897

    Article  Google Scholar 

  54. Buchalczyk T, Pucek Z (1963) Food storage of the European water shrew, Neomys fodiens (Pennant, 1771); Gromadzenie pokarmu przez rzsorka, Neomys fodiens (Pennant, 1771). Acta Theriol 7:376–379. https://doi.org/10.4098/AT.arch.63-22

    Article  Google Scholar 

  55. Tomasi TE (1978) Function of venom in the short-tailed shrew Blarina brevicauda. J Mammal 59(4):852–854. https://doi.org/10.2307/1380150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge English language support from Dr. Peter Muiruri Kamau and all the participants of this study.

Funding

This work was supported by the National Science Foundation of China (31930015, 32100907, 81770464, and 32070443), Chinese Academy of Sciences (XDB31000000 and KFJ-STS-SCYD-304), Chongqing Municipal Education Commission (HZ2021020), and Yunnan Province (2019FA006, 2019FB127, 2019ZF003, and 202003AD150008), as well as the Ministry of Science and Technology of China (2018YFA0801403).

Author information

Authors and Affiliations

Authors

Contributions

ZL, XT, WC, XJ, ZD, LL, and XH performed research; XJ, ZC, KH, and QL Collected Blarinella quadraticauda specimens and analyzed toxicological effects; W.C. provided B. quadraticauda bite case report; RL, XT, ZL, MR, and PK wrote the paper.

Corresponding author

Correspondence to Ren Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All animal-based experiments conformed to the recommendations in the Guide for the Care and Use of Laboratory Animals of the Kunming Institute of Zoology, Chinese Academy of Sciences. All experiments complied with national legislation and were approved by the Committee on the Ethics of Animal Experiments of the Kunming Institute of Zoology, Chinese Academy of Sciences (SYXK-2014-0007 and SMKX-2016013).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

The authors affirm that human research participants provided informed consent for publication of the image in Fig. S1C.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3228 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Z., Tang, X., Chen, W. et al. Shrew's venom quickly causes circulation disorder, analgesia and hypokinesia. Cell. Mol. Life Sci. 79, 35 (2022). https://doi.org/10.1007/s00018-021-04116-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04116-x

Keywords

Navigation