Skip to main content

Plant Alkaloids: Structures and Bioactive Properties

  • Chapter
  • First Online:
Plant-derived Bioactives

Abstract

Alkaloids are nitrogen-containing natural products found in bacteria, fungi, animals, and plants with complex and diverse structures. The widespread distribution of alkaloids along with their wide array of structures makes their classification often difficult. However, for their study, alkaloids can be classified depending on their chemical structure, biochemical origin, and/or natural origin. Alkaloids can be derived from several biosynthetic pathways, such as the shikimate pathway; the ornithine, lysine, and nicotinic acid pathway; the histidine and purine pathway; and the terpenoid and polyketide pathway. Traditionally, plant alkaloids have played a pivotal role in folk medicines since ancient times as purgatives, antitussives, sedatives, and treatments for a wide variety of ailments. Currently, several alkaloids have served as models for modern drugs, and there are several alkaloids used in pharmacology, such as codeine, brucine, morphine, ephedrine, and quinine. Herein, this work is a comprehensive revision from the Web of Knowledge and Scopus databases on the recent information (2010–2019) regarding plant-derived alkaloids, their structural classification and bioactive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adewusi E, Afolayan AJ (2010) A review of natural products with hepatoprotective activity. J Med Plants Res 4(13):1318–1334

    Google Scholar 

  • Ajungla L, Patil P, Barmukh R, Nikam T (2009) Influence of biotic and abiotic elicitors on accumulation of hyoscyamine and scopolamine in root cultures of Datura metel L. Indian J Biotechnol 8(7):317–322

    CAS  Google Scholar 

  • Alasvand M, Assadollahi V, Ambra R, Hedayati E, Kooti W, Peluso I (2019) Antiangiogenic effect of alkaloids. Oxid Med Cell Longev 2019:9475908. https://doi.org/10.1155/2019/9475908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves de Almeida AC, de-Faria FM, Dunder RJ, LPB M, ARM S-B, Luiz-Ferreira A (2017) Recent trends in pharmacological activity of alkaloids in animal colitis: potential use for inflammatory bowel disease. Evid Based Complement Alternat Med 2017:8528210. https://doi.org/10.1155/2017/8528210

    Article  PubMed  PubMed Central  Google Scholar 

  • Amirkia V, Heinrich M (2014) Alkaloids as drug leads–a predictive structural and biodiversity-based analysis. Phytochem Lett 10:xlviii–xlliii

    CAS  Google Scholar 

  • Aniszewski T (ed) (2015) Alkaloids: chemistry, biology, ecology, and applications. Elsevier, Pacific Grove, CA, p 496

    Google Scholar 

  • Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse ML, Schreiber S, Schafer H (2013) Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 32(40):4825–4835. https://doi.org/10.1038/onc.2012.493

    Article  CAS  PubMed  Google Scholar 

  • Awaad AS, Al-Jaber NA, Soliman GA, Al-Outhman MR, Zain ME, Moses JE, El-Meligy RM (2012) New biological activities of Casimiroa edulis leaf extract and isolated compounds. Phytother Res 26(3):452–457. https://doi.org/10.1002/ptr.3690

    Article  CAS  PubMed  Google Scholar 

  • Baranska M, Roman M, Schulz H, Baranski R (2013) Recent advances in Raman analysis of plants: alkaloids, carotenoids, and polyacetylenes. Curr Anal Chem 9(1):108–127

    CAS  Google Scholar 

  • Baros S, Karsayová M, Jomová K, Gáspár A, Valko M (2012) Free radical scavenging capacity of Papaver somniferum L. and determination of pharmacologically active alkaloids using capillary electrophoresis. J Microbiol Biotech Food Sci 1:725

    Google Scholar 

  • Basey K, McGaw BA, Woolley JG (1992) Phygrine, an alkaloid from Physalis species. Phytochemistry 31(12):4173–4176. https://doi.org/10.1016/0031-9422(92)80437-J

    Article  CAS  Google Scholar 

  • Bauer I, Knölker H-J (2012) Synthesis of pyrrole and carbazole alkaloids. In: Knölker H-J (ed) Alkaloid synthesis. Springer-Verlag, Berlin Heidelberg, pp 203–253

    Google Scholar 

  • Beyer J, Drummer OH, Maurer HH (2009) Analysis of toxic alkaloids in body samples. Forensic Sci Int 185(1–3):1–9

    CAS  PubMed  Google Scholar 

  • Bhadra K, Kumar GS (2011) Therapeutic potential of nucleic acid-binding isoquinoline alkaloids: binding aspects and implications for drug design. Med Res Rev 31(6):821–862

    CAS  PubMed  Google Scholar 

  • Bohm BA, Stuessy TF (2001) Flavonoids of the sunflower family (Asteraceae). Springer, Berlin Heidelberg, p 592

    Google Scholar 

  • Böttger A, Vothknecht U, Bolle C, Alkaloids WA (2018) Lessons on Caffeine, Cannabis & Co. Springer, Berlin Heidelberg, pp 179–203

    Google Scholar 

  • Boulaaba M, Medini F, Hajlaoui H, Mkadmini K, Falleh H, Ksouri R, Isoda H, Smaoui A, Abdelly C (2019) Biological activities and phytochemical analysis of phenolic extracts from Salsola kali L. role of endogenous factors in the selection of the best plant extracts. S Afr J Bot 123:193–199

    CAS  Google Scholar 

  • Bozkurt B, Ahmet E, Gi K, Ma Ö, Berkov S, Bastida J, Nü S (2017) Alkaloid profiling of Galanthus woronowii Losinsk. by GC-MS and evaluation of its biological activity. Marmara Pharm J 21(4):915–920

    CAS  Google Scholar 

  • Bribi N (2018) Pharmacological activity of alkaloids: a review. Asian J Bot 1. https://doi.org/10.63019/ajb.v1i2.467

  • Buckingham J, Baggaley KH, Roberts AD, Szabo LF (2010) Dictionary of alkaloids, with CD-ROM. CRC Press, Boca Raton, FL

    Google Scholar 

  • Bunsupa S, Yamazaki M, Saito K (2012) Quinolizidine alkaloid biosynthesis: recent advances and future prospects. Front Plant Sci 3:239. https://doi.org/10.3389/fpls.2012.00239

    Article  PubMed  PubMed Central  Google Scholar 

  • Byler KG, Wang C, Setzer WN (2009) Quinoline alkaloids as intercalative topoisomerase inhibitors. J Mol Model 15(12):1417

    CAS  PubMed  Google Scholar 

  • Cai X-H, Li Y, Su J, Liu Y-P, Li X-N, Luo X-D (2011) Novel indole and quinoline alkaloids from Melodinus yunnanensis. Nat Prod Biopros 1(1):25–28

    CAS  Google Scholar 

  • Cardoso-Lopes EM, Maier JA, da Silva MR, Ragasini LO, Simote SY, Lopes NP, Pirani JR, Bolzani VD, Young MCM (2010) Alkaloids from stems of Esenbeckia leiocarpa Engl. (Rutaceae) as potential treatment for Alzheimer disease. Molecules 15(12):9205–9213. https://doi.org/10.3390/molecules15129205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho JCB, dos Santos AH, Lobo JFR, Ferreira JLP, Oliveira AP, Rocha L (2013) Pyrrolizidine alkaloids in two endemic capeverdian Echium species. Biochem Syst Ecol 50:1–6

    CAS  Google Scholar 

  • Chen J, Gao K, Liu T, Zhao H, Wang J, Wu H, Liu B, Wang W (2013) Aporphine alkaloids: a kind of alkaloids’ extract source, chemical constitution and pharmacological actions in different botany. Asian J Chem 25:18

    Google Scholar 

  • Chen AH, Liu YP, Wang ZX, Ma YL, Jiang ZH, Lai L, Guo RR, Long JT, Lin SX, Xu W, Fu YH (2017) Structurally diverse indole alkaloids from Ochrosia elliptica. Heterocycles 94(4):743. https://doi.org/10.3987/com-16-13626

    Article  CAS  Google Scholar 

  • Chiu LY, Hsin IL, Yang TY, Sung WW, Chi JY, Chang JT, Ko JL, Sheu GT (2017) The ERK-ZEB1 pathway mediates epithelial mesenchymal transition in pemetrexed resistant lung cancer cells with suppression by vinca alkaloids. Oncogene 36(2):242–253. https://doi.org/10.1038/onc.2016.195

    Article  CAS  PubMed  Google Scholar 

  • Choi JS, Kim J-H, Ali MY, Min B-S, Kim G-D, Jung HA (2014) Coptis chinensis alkaloids exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP-α and PPAR-γ. Fitoterapia 98:199–208. https://doi.org/10.1016/j.fitote.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  • Choi JS, Ali MY, Jung HA, Oh SH, Choi RJ, Kim EJ (2015) Protein tyrosine phosphatase 1B inhibitory activity of alkaloids from Rhizoma coptidis and their molecular docking studies. J Ethnopharmacol 171:28–36. https://doi.org/10.1016/j.jep.2015.05.020

    Article  CAS  PubMed  Google Scholar 

  • Chonpathompikunlert P, Wattanathorn J, Muchimapura S (2010) Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem Toxicol 48(3):798–802. https://doi.org/10.1016/j.fct.2009.12.009

    Article  CAS  PubMed  Google Scholar 

  • Choudhary MI, Adhikari A, Rasheed S, Marasini BP, Hussain N, Kaleem WA, Atta-ur R (2011) Cyclopeptide alkaloids of Ziziphus oxyphylla Edgw as novel inhibitors of α-glucosidase enzyme and protein glycation. Phytochem Lett 4(4):404–406. https://doi.org/10.1016/j.phytol.2011.08.006

    Article  CAS  Google Scholar 

  • Ciric A, Vinterhalter B, Savikin-Fodulovic K, Sokovic M, Vinterhalter D (2008) Chemical analysis and antimicrobial activity of methanol extracts of celandine (Chelidonium majus L.) plants growing in nature and cultured in vitro. Arch Biol Sci 60(1):7P–8P. https://doi.org/10.2298/abs080107pc

    Article  Google Scholar 

  • Cortes N, Alvarez R, Osorio EH, Alzate F, Berkov S, Osorio E (2015) Alkaloid metabolite profiles by GC/MS and acetylcholinesterase inhibitory activities with binding-mode predictions of five Amaryllidaceae plants. J Pharm Biomed Anal 102:222–228. https://doi.org/10.1016/j.jpba.2014.09.022

    Article  CAS  PubMed  Google Scholar 

  • Croaker A, King GJ, Pyne JH, Anoopkumar-Dukie S, Liu L (2016) Sanguinaria canadensis: traditional medicine, phytochemical composition, biological activities and current uses. Int J Mol Sci 17(9):32. https://doi.org/10.3390/ijms17091414

    Article  CAS  Google Scholar 

  • Cushnie TT, Cushnie B, Lamb AJ (2014) Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 44(5):377–386

    CAS  PubMed  Google Scholar 

  • Debnath B, Singh WS, Das M, Goswami S, Singh MK, Maiti D, Manna K (2018) Role of plant alkaloids on human health: a review of biological activities. Mater Today Chem 9:56–72. https://doi.org/10.1016/j.mtchem.2018.05.001

    Article  CAS  Google Scholar 

  • Diamond A, Desgagné-Penix I (2016) Metabolic engineering for the production of plant isoquinoline alkaloids. Plant Biotechnol J 14(6):1319–1328

    CAS  PubMed  Google Scholar 

  • Diaz G (2015) Toxicosis by plant alkaloids in humans and animals in Colombia. Toxins (Basel) 7(12):5408–5416

    CAS  Google Scholar 

  • Ding PL, Liao ZX, Huang H, Zhou P, Chen DF (2006) (+)-12 alpha-Hydroxysophocarpine, a new quinolizidine alkaloid and related anti-HBV alkaloids from Sophora flavescens. Bioorg Med Chem Lett 16(5):1231–1235. https://doi.org/10.1016/j.bmcl.2005.11.073

    Article  CAS  PubMed  Google Scholar 

  • El Bazaoui A, Bellimam My A, Soulaymani A (2012) Tropane alkaloids of Datura innoxia from morocco. Zeitschrift für Naturforschung C 67(1-2):8–14

    Google Scholar 

  • Encyclopædia Britannica (2018) Alkaloid. https://www.britannica.com/science/alkaloid. Accessed 30 June 2019.

  • Estévez V, Villacampa M, Menéndez JC (2014) Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem Soc Rev 43(13):4633–4657. https://doi.org/10.1039/C3CS60015G

    Article  PubMed  Google Scholar 

  • Evans WC (2009) Trease and evans’ pharmacognosy. Saunders Ltd., Elsevier, Edinburgh, p 616

    Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66. https://doi.org/10.1146/annurev.arplant.52.1.29

    Article  CAS  PubMed  Google Scholar 

  • Feng T, Wang YY, Su J, Li Y, Cai XH, Luo XD (2011) Amaryllidaceae alkaloids from Lycoris radiata. Helv Chim Acta 94(1):178–183. https://doi.org/10.1002/hlca.201000176

    Article  CAS  Google Scholar 

  • Ferreira A, Rodrigues M, Fortuna A, Falcão A, Alves G (2016) Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology. Phytochem Rev 15(1):51–85. https://doi.org/10.1007/s11101-014-9384-y

    Article  CAS  Google Scholar 

  • Friedman M (2015) Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. J Agric Food Chem 63(13):3323–3337. https://doi.org/10.1021/acs.jafc.5b00818

    Article  CAS  PubMed  Google Scholar 

  • Gañán NA, Dias AMA, Bombaldi F, Zygadlo JA, Brignole EA, de Sousa HC, Braga MEM (2016) Alkaloids from Chelidonium majus L.: fractionated supercritical CO2 extraction with co-solvents. Sep Purif Technol 165:199–207. https://doi.org/10.1016/j.seppur.2016.04.006

    Article  CAS  Google Scholar 

  • Gao F, Li Y-Y, Wang D, Huang X, Liu Q (2012) Diterpenoid alkaloids from the Chinese traditional herbal “Fuzi” and their cytotoxic activity. Molecules 17(5):5187–5194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghedira K, Richard B, Massiot G, Sevenet T (1998) Alkaloids of Alstonia angustiloba. Phytochem 27:3955–3962

    Google Scholar 

  • Goel P, Alam O, Naim MJ, Nawaz F, Iqbal M, Alam MI (2018) Recent advancement of piperidine moiety in treatment of cancer-A review. Eur J Med Chem 157:480–502. https://doi.org/10.1016/j.ejmech.2018.08.017

    Article  CAS  PubMed  Google Scholar 

  • Goyal S (2013) Ecological role of alkaloids. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes: 149–71.

    Google Scholar 

  • Guirimand G, Courdavault V, St-Pierre B, Burlat V. Biosynthesis and regulation of alkaloids. Plant developmental biology-biotechnological perspectives. Springer Berlin; 2010. p. 139-160.

    Google Scholar 

  • Halliwell B, CGutteridge JMC (2015) Reactive species in disease: friends or foes? In: Halliwell B, CGutteridge JMC (eds) Free radicals in biology and medicine, 5th edn. Oxford University Press, London, pp 511–638

    Google Scholar 

  • Hamid HA, Ramli ANM, Yusoff MM (2017) Indole alkaloids from plants as potential leads for antidepressant drugs: a mini review. Front Pharmacol 8:96. https://doi.org/10.3389/fphar.2017.00096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henning CP (2013) Compuestos secundarios nitrogenados: alcaloides. In: Ringuelet J, Viña S (eds) Productos Naturales Vegetales. Editorial de la Universidad de la Plata, La Plata, Argentina, p 18

    Google Scholar 

  • Hisiger S, Jolicoeur M (2007) Analysis of Catharanthus roseus alkaloids by HPLC. Phytochem Rev 6(2):207–234. https://doi.org/10.1007/s11101-006-9036-y

    Article  CAS  Google Scholar 

  • Hoyer GA, Huth A, Nitschke I (1978) Holarresine- a new steroidal alkaloid from Holarrhena floribunda. J Med Plant Res 34:47–52

    CAS  Google Scholar 

  • Hu J, Shi X, Chen J, Mao X, Zhu L, Yu L, Shi J (2014) Alkaloids from Toddalia asiatica and their cytotoxic, antimicrobial and antifungal activities. Food Chem 148:437–444. https://doi.org/10.1016/j.foodchem.2012.12.058

    Article  CAS  PubMed  Google Scholar 

  • Huang S-D, Zhang Y, He H-P, Li S-F, Tang G-H, Chen D-Z, Cao M-M, Di Y-T, Hao X-J (2013) A new amaryllidaceae alkaloid from the bulbs of Lycoris radiata. Chin J Nat Med 11(4):406–410. https://doi.org/10.1016/S1875-5364(13)60060-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulcova D, Breiterova K, Siatka T, Klimova K, Davani L, Safratova M, Host’alkova A, De Simone A, Andrisano V, Cahlikova L (2018) Amaryllidaceae alkaloids as potential glycogen synthase kinase-3 beta inhibitors. Molecules 23(4):9. https://doi.org/10.3390/molecules23040719

    Article  CAS  Google Scholar 

  • Hussain G, Rasul A, Anwar H, Aziz N, Razzaq A, Wei W, Ali M, Li J, Li X (2018) Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. Int J Biol Sci 14(3):341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inada M, Shindo M, Kobayashi K, Sato A, Yamamoto Y, Akasaki Y, Ichimura K, Tanuma S-I (2019) Anticancer effects of a non-narcotic opium alkaloid medicine, papaverine, in human glioblastoma cells. PLoS One 14(5):e0216358. https://doi.org/10.1371/journal.pone.0216358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen G, Jürgens H-U, Schliephake E, Ordon F (2012) Effect of the soil pH on the alkaloid content of Lupinus angustifolius. Int J Agron 2012

    Google Scholar 

  • Jayakumar K, Murugan K (2016) Solanum alkaloids and their pharmaceutical roles: a review. J Anal Pharm Res 3(6):00075

    Google Scholar 

  • Jiang J, Hu C (2009) Evodiamine: a novel anti-cancer alkaloid from Evodia rutaecarpa. Molecules 14(5):1852–1859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X-Y, Yang H, Zhao Y (2006) The determinnation of steroidal alkaloid content in Solanum nigrum L. Food Science 27:224–227

    CAS  Google Scholar 

  • Jing H, Liu J, Liu H, Xin H (2014) Histochemical investigation and kinds of alkaloids in leaves of different developmental stages in Thymus quinquecostatus. Sci World J 2014:839548

    Google Scholar 

  • Jirschitzka J, Schmidt GW, Reichelt M, Schneider B, Gershenzon J, D’Auria JC (2012) Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae. Proc Natl Acad Sci 109(26):10304. https://doi.org/10.1073/pnas.1200473109

    Article  PubMed  PubMed Central  Google Scholar 

  • Joselin J, Brintha TSS, Florence AR, Jeeva S (2012) Screening of select ornamental flowers of the family Apocynaceae for phytochemical constituents. Asian Pac J Trop Dis 2:S260–S2S4. https://doi.org/10.1016/S2222-1808(12)60162-5

    Article  CAS  Google Scholar 

  • Joshi P, Vishwakarma RA, Bharate SB (2017) Natural alkaloids as P-gp inhibitors for multidrug resistance reversal in cancer. Eur J Med Chem 138:273–292. https://doi.org/10.1016/j.ejmech.2017.06.047

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Arora S (2015) Alkaloids-important therapeutic secondary metabolites of plant origin. J Crit Rev 2(3):1–8

    Google Scholar 

  • Kaur R, Matta T, Kaur H (2019) Plant derived alkaloids. Saudi J Life Sci 2(5):158–189

    Google Scholar 

  • Khan AY, Kumar GS (2015) Natural isoquinoline alkaloids: binding aspects to functional proteins, serum albumins, hemoglobin, and lysozyme. Biophys Rev 7(4):407–420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Kim S-O, Lee M, Lee JH, Jung W-S, Moon S-K, Kim Y-S, Cho K-H, Ko C-N, Lee EH (2014) Tetramethylpyrazine, a natural alkaloid, attenuates pro-inflammatory mediators induced by amyloid β and interferon-γ in rat brain microglia. Eur J Pharmacol 740:504–511. https://doi.org/10.1016/j.ejphar.2014.06.037

    Article  CAS  PubMed  Google Scholar 

  • Kintsurashvili LG, Vachnadze VY (2000) Alkaloids of Glaucium corniculatum and G. flavum growing in Georgia. Chem Nat Compd 36(2):225–226. https://doi.org/10.1007/bf02236441

    Article  CAS  Google Scholar 

  • Koetz M, Santos TG, Rayane M, Henriques AT (2017) Quantification of atropine in leaves of Atropa belladonna: development and validation of method by high-perfomance liquid chromatography (HPLC). Drug Analy Res 1(1):44–49

    Google Scholar 

  • Koleva II, van Beek TA, Soffers AE, Dusemund B, Rietjens IM (2012) Alkaloids in the human food chain–natural occurrence and possible adverse effects. Mol Nutr Food Res 56(1):30–52

    CAS  PubMed  Google Scholar 

  • Konrath EL, Passos CS, Klein-Júnior LC, Henriques AT (2013) Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J Pharm Pharmacol 65(12):1701–1725. https://doi.org/10.1111/jphp.12090

  • Kramell R, Schmidt J, Herrmann G, Schliemann W (2005) N-(Jasmonoyl)tyrosine-derived compounds from flowers of broad beans (Vicia faba). J Nat Prod 68(9):1345–1349. https://doi.org/10.1021/np0501482

    Article  CAS  PubMed  Google Scholar 

  • Ku W-F, Tan S-J, Low Y-Y, Komiyama K, Kam T-S (2011) Angustilobine and andranginine type indole alkaloids and an uleine–secovallesamine bisindole alkaloid from Alstonia angustiloba. Phytochemistry 72(17):2212–2218. https://doi.org/10.1016/j.phytochem.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  • Kuete V (2014) 21 - Health Effects of Alkaloids from African Medicinal Plants. In: Kuete V (ed) Toxicological Survey of African Medicinal Plants. Elsevier, London, pp 611–633

    Google Scholar 

  • Kukula-Koch WA, Widelski J (2017) Chapter 9 - Alkaloids. In: Badal S, Delgoda R (eds) Pharmacognosy. Academic Press, Boston, pp 163–198

    Google Scholar 

  • Kumar P, Sharma B, Bakshi N (2009) Biological activity of alkaloids from Solanum dulcamara L. Nat Prod Res 23(8):719–723. https://doi.org/10.1080/14786410802267692

    Article  CAS  PubMed  Google Scholar 

  • Kutchan TM (1995) Alkaloid biosynthesis—the basis for metabolic engineering of medicinal plants. Plant Cell 7

    Google Scholar 

  • Lee SK, Nam K-A, Heo Y-H (2003) Cytotoxic activity and G2/M cell cycle arrest mediated by antofine, a phenanthroindolizidine alkaloid isolated from Cynanchum paniculatum. Planta Med 69(01):21–25. https://doi.org/10.1055/s-2003-37021

    Article  CAS  PubMed  Google Scholar 

  • Li S, Lei Y, Jia Y, Li N, Wink M, Ma Y (2011) Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells. Phytomedicine 19(1):83–87. https://doi.org/10.1016/j.phymed.2011.06.031

    Article  CAS  PubMed  Google Scholar 

  • Li D-h, Guo J, Bin W, Zhao N, K-b W, Li J-y, Li Z-l, H-m H (2016) Two new benzylisoquinoline alkaloids from Thalictrum foliolosum and their antioxidant and in vitro antiproliferative properties. Arch Pharm Res 39(7):871–877

    CAS  PubMed  Google Scholar 

  • Liu H-L, Huang X-Y, Dong M-L, Xin G-R, Guo Y-W (2010) Piperidine alkaloids from Chinese Mangrove Sonneratia hainanensis. Planta Med 76(09):920–922. https://doi.org/10.1055/s-0029-1240811

    Article  CAS  PubMed  Google Scholar 

  • Lu J-J, Bao J-L, Chen X-P, Huang M, Wang Y-T (2012) Alkaloids isolated from natural herbs as the anticancer agents. Evid Based Complement Alternat Med 2012

    Google Scholar 

  • Ma H, He K, Zhu J, Li X, Ye X (2019) The anti-hyperglycemia effects of Rhizoma Coptidis alkaloids: a systematic review of modern pharmacological studies of the traditional herbal medicine. Fitoterapia 134:210–220. https://doi.org/10.1016/j.fitote.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  • Macabeo APG, Krohn K, Gehle D, Read RW, Brophy JJ, Cordell GA, Franzblau SG, Aguinaldo AM (2005) Indole alkaloids from the leaves of Philippine Alstonia scholaris. Phytochemistry 66(10):1158–1162. https://doi.org/10.1016/j.phytochem.2005.02.018

    Article  CAS  PubMed  Google Scholar 

  • Mahlangu ZP, Botha FS, Madoroba E, Chokoe K, Elgorashi EE (2017) Antimicrobial activity of Albizia gummifera (J.F.Gmel.) C.A.Sm leaf extracts against four Salmonella serovars. S Afr J Bot 108:132–136. https://doi.org/10.1016/j.sajb.2016.10.015

    Article  CAS  Google Scholar 

  • Mao Z, Huang S, Gao L, Wang A, Huang P (2014) A novel and versatile method for the enantioselective syntheses of tropane alkaloids. Sci China Chem 57(2):252–264. https://doi.org/10.1007/s11426-013-4998-2

    Article  CAS  Google Scholar 

  • Marella A, Tanwar OP, Saha R, Ali MR, Srivastava S, Akhter M, Shaquiquzzaman M, Alam MM (2013) Quinoline: a versatile heterocyclic. Saudi Pharm J 21(1):1–12. https://doi.org/10.1016/j.jsps.2012.03.002

    Article  PubMed  Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Role of secondary metabolites in defense mechanisms of plants. Biol Med 3(2):232–249

    CAS  Google Scholar 

  • Mazumder PM, Das S, Das MK (2011) Phyto-pharmacology of Berberis aristata DC: a review. J Drug Deliv Therap 1(2)

    Google Scholar 

  • Mbeunkui F, Grace MH, Lategan C, Smith PJ, Raskin I, Lila MA (2012) In vitro antiplasmodial activity of indole alkaloids from the stem bark of Geissospermum vellosii. J Ethnopharmacol 139(2):471–477. https://doi.org/10.1016/j.jep.2011.11.036

    Article  CAS  PubMed  Google Scholar 

  • McNulty J, Nair JJ, Little JRL, Brennan JD, Bastida J (2010) Structure–activity studies on acetylcholinesterase inhibition in the lycorine series of Amaryllidaceae alkaloids. Bioorg Med Chem Lett 20(17):5290–5294. https://doi.org/10.1016/j.bmcl.2010.06.130

    Article  CAS  PubMed  Google Scholar 

  • Meira M, EPd S, David JM, David JP (2012) Review of the genus Ipomoea: traditional uses, chemistry and biological activities. Revista Bras Farmacog 22(3):682–713

    CAS  Google Scholar 

  • Michael JP (2008) Indolizidine and quinolizidine alkaloids. Nat Prod Rep 25(1):139–165

    CAS  PubMed  Google Scholar 

  • Milugo TK, Omosa LK, Ochanda JO, Owuor BO, Wamunyokoli FA, Oyugi JO, Ochieng JW (2013) Antagonistic effect of alkaloids and saponins on bioactivity in the quinine tree (Rauvolfia caffra sond.): further evidence to support biotechnology in traditional medicinal plants. BMC Complement Altern Med 13(1):285. https://doi.org/10.1186/1472-6882-13-285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirhadi E, Rezaee M, Malaekeh-Nikouei B (2018) Nano strategies for Berberine delivery, a natural alkaloid of Berberis. Biomed Pharmacother 104:465–473. https://doi.org/10.1016/j.biopha.2018.05.067

    Article  CAS  PubMed  Google Scholar 

  • Mizrachi N, Levy S, Goren Z (2000) Fatal poisoning from Nicotiana glauca leaves: identification of anabasine by gas-chromatography/mass spectrometry. J Forensic Sci 45(3):736–741

    CAS  PubMed  Google Scholar 

  • Moreira R, Pereira D, Valentão P, Andrade P (2018) Pyrrolizidine alkaloids: chemistry, pharmacology, toxicology and food safety. Int J Mol Sci 19(6):1668

    PubMed Central  Google Scholar 

  • Muthna D, Cmielova J, Tomsik P, Rezacova M (2013) Boldine and related aporphines: from antioxidant to antiproliferative properties. Nat Prod Commun 8(12):1934578X1300801235

    Google Scholar 

  • Nadkarni NM, Matelson TJ, Haber WA (1995) Structural characteristics and floristic composition of a Neotropical Cloud Forest, Monteverde, Costa Rica. J Trop Ecol 11(4):481–495

    Google Scholar 

  • Nair JJ, Bastida J, Codina C, Viladomat F, van Staden J (2013) Alkaloids of the South African amaryllidaceae: a review. Nat Prod Commun 8(9):1934578X1300800938. https://doi.org/10.1177/1934578x1300800938

    Article  Google Scholar 

  • National Center for Biotechnology Information. Coniine, CID=9985. 2019a. https://pubchem.ncbi.nlm.nih.gov/compound/Coniine. Accessed 8 Jul 2019.

  • National Center for Biotechnology Information. Morphine, CID=5288826. 2019b. https://pubchem.ncbi.nlm.nih.gov/compound/Morphine. Accessed 8 Jul 2019.

  • Ncube B, Nair JJ, Rárová L, Strnad M, Finnie JF, Van Staden J (2015) Seasonal pharmacological properties and alkaloid content in Cyrtanthus contractus N.E. Br. S Afr J Bot 97:69–76. https://doi.org/10.1016/j.sajb.2014.12.005

    Article  CAS  Google Scholar 

  • Ng YP, Or TCT, Ip NY (2015) Plant alkaloids as drug leads for Alzheimer’s disease. Neurochem Int 89:260–270. https://doi.org/10.1016/j.neuint.2015.07.018

  • Nino J, Hincapié GM, Correa YM, Mosquera OM (2007) Alkaloids of Crinum x powellii “Album”(Amaryllidaceae) and their topoisomerase inhibitory activity. Zeitschrift für Naturforschung C 62(3-4):223–226

    CAS  Google Scholar 

  • Noriega P, Sola M, Barukcic A, Garcia K, Osorio E (2015) Cosmetic antioxidant potential of extracts from species of the Cinchona pubescens (Vahl). Int J Phytocosm Nat Ing 2(1):1–14

    Google Scholar 

  • O’Connor SE (2010) 1.25-alkaloids Comprehensive Natural Products II 1:977-1007.

    Google Scholar 

  • Oliveira SL, da Silva MS, Tavares JF, Sena-Filho JG, Lucena HF, Romero MA, Barbosa-Filho JM (2010) Tropane Alkaloids from erythroxylum genus: distribution and compilation of 13C-NMR spectral data. Chem Biodivers 7(2):302–326

    CAS  PubMed  Google Scholar 

  • Palazón J, Moyano E, Cusidó RM, Bonfill M, Oksman-Caldentey KM, Piñol MT (2003) Alkaloid production in Duboisia hybrid hairy roots and plants overexpressing the h6h gene. Plant Sci 165(6):1289–1295. https://doi.org/10.1016/S0168-9452(03)00340-6

    Article  CAS  Google Scholar 

  • Pan Q, Mustafa NR, Tang K, Choi YH, Verpoorte R (2016) Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev 15(2):221–250

    CAS  Google Scholar 

  • Patel MB, Poisson J, Poussett JL, Rowson JM (1964) Alkaloids of the leaves of Rauwolfia vomitoria Afz. J Pharm Pharmacol 16(S1):163T–165T. https://doi.org/10.1111/j.2042-7158.1964.tb07556.x

    Article  Google Scholar 

  • Pérez-Amador M, Ocotero VM, Castañeda JG, Esquinca AG (2007) Alkaloids in Solanum torvum Sw (Solanaceae). Int J Exp Bot 76:39–45

    Google Scholar 

  • Petitto V, Serafini M, Gallo FR, Multari G, Nicoletti M (2010) Alkaloids from Glaucium flavum from Sardinia. Nat Prod Res 24(11):1033–1035. https://doi.org/10.1080/14786410902904418

    Article  CAS  PubMed  Google Scholar 

  • Pirillo A, Catapano AL (2015) Berberine, a plant alkaloid with lipid- and glucose-lowering properties: From in vitro evidence to clinical studies. Atherosclerosis 243(2):449–461. https://doi.org/10.1016/j.atherosclerosis.2015.09.032

    Article  CAS  PubMed  Google Scholar 

  • Poklis J, Peace MR (2017) Identification of the Kratom (Mitragyna speciosa) alkaloid in commercially available products. University VC

    Google Scholar 

  • Porwal M, Kumar A (2015) Neuroprotective effect of Annona squamosa & (-) anonaine in decreased GABA receptor of epileptic rats. J Appl Pharmac Sci 5(1):018–023

    CAS  Google Scholar 

  • Ranjitha D, Sudha K (2015) Alkaloids in foods. Int J Pharmac Chem Biol Sci 5(4)

    Google Scholar 

  • Roberts MF (2013) Alkaloids: biochemistry, ecology, and medicinal applications. Springer, New York

    Google Scholar 

  • Roy A (2015) Pharmacological activities of Indian Heliotrope (Heliotropium indicum L.): a review. J Pharmacogn Phytochem 4(3)

    Google Scholar 

  • Rukunga GM, Waterman PG (1996) New macrocyclic spermine (Budmunchiamine) Alkaloids from Albizia gummifera: with some observations on the structure−activity relationships of the Budmunchiamines. J Nat Prod 59(9):850–853. https://doi.org/10.1021/np960397d

    Article  CAS  PubMed  Google Scholar 

  • Sackett TE, Towers GHN, Isman MB (2007) Effects of furoquinoline alkaloids on the growth and feeding of two polyphagous lepidopterans. Chemoecology 17(2):97–101. https://doi.org/10.1007/s00049-007-0367-y

    Article  CAS  Google Scholar 

  • Sagi S, Avula B, Wang Y-H, Khan IA (2016) Quantification and characterization of alkaloids from roots of Rauwolfia serpentina using ultra-high performance liquid chromatography-photo diode array-mass spectrometry. Anal Bioanal Chem 408(1):177–190

    CAS  PubMed  Google Scholar 

  • Sandoval M, Okuhama NN, Zhang XJ, Condezo LA, Lao J, Angeles FM, Musah RA, Bobrowski P, Miller MJS (2002) Anti-inflammatory and antioxidant activities of cat’s claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content. Phytomedicine 9(4):325–337. https://doi.org/10.1078/0944-7113-00117

  • Santana O, Reina M, Anaya AL, Hernández F, Izquierdo ME, González-Coloma A (2008) 3-O-acetyl-narcissidine, a bioactive alkaloid from Hippeastrum puniceum Lam.(Amaryllidaceae). Zeitschrift für Naturforschung C 63(9-10):639–643

    CAS  Google Scholar 

  • Santos AP, Moreno PRH (2004) Pilocarpus spp.: a survey of its chemical constituents and biological activities. Revista Brasil Ciênc Farmac 40:116–137

    Google Scholar 

  • Schramm S, Köhler N, Rozhon W (2019) Pyrrolizidine alkaloids: biosynthesis, biological activities and occurrence in crop plants. Molecules 24(3):498

    PubMed Central  Google Scholar 

  • Sharma B, Salunke R, Balomajumder C, Daniel S, Roy P (2010) Anti-diabetic potential of alkaloid rich fraction from Capparis decidua on diabetic mice. J Ethnopharmacol 127(2):457–462. https://doi.org/10.1016/j.jep.2009.10.013

    Article  PubMed  Google Scholar 

  • Shih Y-T, Chen PS, Wu C-H, Tseng Y-T, Wu Y-C, Lo Y-C (2010) Arecoline, a major alkaloid of the areca nut, causes neurotoxicity through enhancement of oxidative stress and suppression of the antioxidant protective system. Free Radical Biol Med 49(10):1471–1479. https://doi.org/10.1016/j.freeradbiomed.2010.07.017

    Article  CAS  Google Scholar 

  • Shoeb M, Celik S, Jaspars M, Kumarasamy Y, MacManus SM, Nahar L, Thoo-Lin PK, Sarker SD (2005) Isolation, structure elucidation and bioactivity of schischkiniin, a unique indole alkaloid from the seeds of Centaurea schischkinii. Tetrahedron 61(38):9001–9006. https://doi.org/10.1016/j.tet.2005.07.047

    Article  CAS  Google Scholar 

  • Shoeb M, MacManus SM, Jaspars M, Trevidu J, Nahar L, Kong-Thoo-Lin P, Sarker SD (2006) Montamine, a unique dimeric indole alkaloid, from the seeds of Centaurea montana (Asteraceae), and its in vitro cytotoxic activity against the Caco-2 colon cancer cells. Tetrahedron 62(48):11172–11177. https://doi.org/10.1016/j.tet.2006.09.020

    Article  CAS  Google Scholar 

  • Sibi G, Venkategowda A, Gowda L (2014) Isolation and characterization of antimicrobial alkaloids from Plumeria alba flowers against foodborne pathogens. Am J Life Sci 2:1–6

    CAS  Google Scholar 

  • Sichaem J, Worawalai W, Tip-pyang S (2012) Chemical constituents from the roots of Nauclea orientalis. Chem Nat Compd 48(5):827–830. https://doi.org/10.1007/s10600-012-0393-z

    Article  CAS  Google Scholar 

  • Silva Teles MMR, Vieira Pinheiro AA, Da Silva Dias C, Fechine Tavares J, Barbosa Filho JM, Leitão Da Cunha EV (2019) Chapter three - alkaloids of the Lauraceae. In: Knölker H-J (ed) The alkaloids: chemistry and biology. Academic Press, San Diego, CA, pp 147–304

    Google Scholar 

  • Silva AFS, de Andrade JP, Machado KRB, Rocha AB, Apel MA, Sobral MEG, Henriques AT, Zuanazzi JAS (2008) Screening for cytotoxic activity of extracts and isolated alkaloids from bulbs of Hippeastrum vittatum. Phytomedicine 15(10):882–885. https://doi.org/10.1016/j.phymed.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  • Silva VG, Silva RO, Damasceno SR, Carvalho NS, Prudêncio RS, Aragão KS, Guimarães MA, Campos SA, Véras LM, Godejohann M (2013) Anti-inflammatory and antinociceptive activity of epiisopiloturine, an imidazole alkaloid isolated from Pilocarpus microphyllus. J Nat Prod 76(6):1071–1077

    CAS  PubMed  Google Scholar 

  • Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28(1):367–388. https://doi.org/10.1146/annurev.immunol.021908.132603

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Verma M, Malhotra M, Prakash S, Singh TD (2016) Cytotoxicity of alkaloids isolated from Argemone mexicana on SW480 human colon cancer cell line. Pharm Biol 54(4):740–745. https://doi.org/10.3109/13880209.2015.1073334

    Article  CAS  PubMed  Google Scholar 

  • Song CE (2009) An overview of chinchona alkaloids in chemistry. In: Song CE (ed) Chinchona alkaloids in synthesis & catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Federal Republic of Germany

    Google Scholar 

  • Sugeng RM, Sukari A, Rahmani M, Ee GC, Taufiq-Yap Y, Aimi N, Kitajima M (2001) Alkaloids from Aegle marmelos (Rutaceae). Mal J Anal Sci 7(2):463–465

    Google Scholar 

  • Suryawanshi H, Patel M (2011) Traditional uses, medicinal and phytopharmacological properties of Erythrina indica Lam.: an overview. Int J Res Ayurv Pharm 2(5):1531–1533

    Google Scholar 

  • Szőke É, Lemberkovics É, Kursinszki L (2013) Alkaloids derived from lysine: piperidine alkaloids. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes: 303–41.

    Google Scholar 

  • Talapatra SK, Talapatra B (2015) Alkaloids. General Introduction. In: Chemistry of Plant Natural Products: Stereochemistry, Conformation, Synthesis, Biology, and Medicine. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 717–724

    Google Scholar 

  • Tallini L, Andrade J, Kaiser M, Viladomat F, Nair J, Zuanazzi J, Bastida J (2017) Alkaloid constituents of the Amaryllidaceae plant Amaryllis belladonna L. Molecules 22(9):1437

    PubMed Central  Google Scholar 

  • Thakur BK, Anthwal A, Singh Rawat D, Rawat B, Rawat M (2012) A review on genus Alseodaphne: phytochemistry pharmacology. Mini Rev Org Chem 9(4):433–445

    CAS  Google Scholar 

  • Tiong SH, Looi CY, Hazni H, Arya A, Paydar M, Wong WF, Cheah S-C, Mustafa MR, Awang K (2013) Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. don. Molecules 18(8):9770–9784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tundis R, Loizzo MR, Statti GA, Passalacqua NG, Peruzzi L, Menichini F (2007) Pyrrolizidine alkaloid profiles of the Senecio cineraria group (Asteraceae). ZNaturforsch(C) 62(7-8):467–472

    CAS  Google Scholar 

  • Ullah JN, Ali A, Ahmad B, Iqbal N, Adhikari A, Inayat ur R, Ali A, Ali S, Jahan A, Ali H, Ali I, Ullah A, Musharraf SG (2018) Evaluation of antidiabetic potential of steroidal alkaloid of Sarcococca saligna. Biomed Pharmacother 100:461–466. https://doi.org/10.1016/j.biopha.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  • Umezawa K, Kojima I, Simizu S, Lin Y, Fukatsu H, Koide N, Nakade Y, Yoneda M (2018) Therapeutic activity of plant-derived alkaloid conophylline on metabolic syndrome and neurodegenerative disease models. Hum Cell 31(2):95–101. https://doi.org/10.1007/s13577-017-0196-4

    Article  CAS  PubMed  Google Scholar 

  • Verotta L, Pilati T, Tato M, Elisabetsky E, Amador TA, Nunes DS (1998) Pyrrolidinoindoline alkaloids from Psychotria colorata. J Nat Prod 61(3):392–396. https://doi.org/10.1021/np9701642

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Liang G (2009) Zhong Yao Hua Xue. Shanghai Scientific & Technical Publishers, Shanghai

    Google Scholar 

  • Wang F-P, Chen Q-H, Liu X-Y (2010) Diterpenoid alkaloids. Nat Prod Rep 27(4):529–570

    CAS  PubMed  Google Scholar 

  • Wang LY, Wei K, Jiang YW, Cheng H, Zhou J, He W, Zhang CC (2011) Seasonal climate effects on flavanols and purine alkaloids of tea (Camellia sinensis L.). Eur Food Res Technol 233(6):1049–1055. https://doi.org/10.1007/s00217-011-1588-4

    Article  CAS  Google Scholar 

  • Wang RC, Chen XM, Parissenti AM, Joy AA, Tuszynski J, Brindley DN, Wang ZX (2017) Sensitivity of docetaxel-resistant MCF-7 breast cancer cells to microtubule-destabilizing agents including vinca alkaloids and colchicine-site binding agents. PLoS One 12(8):22. https://doi.org/10.1371/journal.pone.0182400

    Article  CAS  Google Scholar 

  • Wansi JD, Devkota KP, Tshikalange E, Kuete V (2013) 14 - Alkaloids from the medicinal plants of Africa. In: Kuete V (ed) Medicinal Plant Research in Africa. Elsevier, Oxford, pp 557–605

    Google Scholar 

  • Wiedenfeld H, Roder E (1991) Pyrrolizidine alkaloids fro Ageratum conyzoides. Planta Med 57(6):578–579. https://doi.org/10.1055/s-2006-960211

    Article  CAS  PubMed  Google Scholar 

  • Wink M (ed) (2010) Annual plant reviews, functions and biotechnology of plant secondary metabolites. Blackwell Publishing Ltd, Annual Plant Reviews

    Google Scholar 

  • Xie Z, Wei Y, Xu J, Lei J, Yu J (2019) Alkaloids from Piper nigrum synergistically enhanced the effect of paclitaxel against paclitaxel-resistant cervical cancer cells through the downregulation of Mcl-1. J Agric Food Chem 67(18):5159–5168. https://doi.org/10.1021/acs.jafc.9b01320

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Deng M (2017) Papaveraceae. In: Identification and control of common weeds: volume 2. Springer Netherlands, Dordrecht, pp 415–432

    Google Scholar 

  • Yadav NP, Chanotia C (2009) Phytochemical and pharmacological profile of leaves of Aegle marmelos Linn. Pharm Rev 2009:144–149

    Google Scholar 

  • Youssef DTA (2001) Alkaloids of the flowers of Hippeastrum vittatum. J Nat Prod 64(6):839–841. https://doi.org/10.1021/np0005816

    Article  CAS  PubMed  Google Scholar 

  • Zalaludin AS (2015) Extraction and isolation of chemical compounds from Tabernaemontana Divaricata (L.) R. BR. EX Roem. & Schult. Leaves with potential anti-neuraminidase activity: University Sains Malaysia

    Google Scholar 

  • Zhan Z-J, Yu Q, Wang Z-L, Shan W-G (2010) Indole alkaloids from Ervatamia hainanensis with potent acetylcholinesterase inhibition activities. Bioorg Med Chem Lett 20(21):6185–6187. https://doi.org/10.1016/j.bmcl.2010.08.123

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, ElSohly HN, Jacob MR, Pasco DS, Walker LA, Clark AM (2001) New indole alkaloids from the bark of Nauclea orientalis. J Nat Prod 64(8):1001–1005. https://doi.org/10.1021/np010042g

    Article  CAS  PubMed  Google Scholar 

  • Zhang B-J, Bao M-F, Zeng C-X, Zhong X-H, Ni L, Zeng Y, Cai X-H (2014) Dimeric erythrina alkaloids from the flower of Erythrina variegata. Org Lett 16(24):6400–6403. https://doi.org/10.1021/ol503190z

    Article  CAS  PubMed  Google Scholar 

  • Zhang XP, Jin Y, Wu YA, Zhang CY, Jin DJ, Zheng QX, Li YB (2018) Anti-hyperglycemic and anti-hyperlipidemia effects of the alkaloid-rich extract from barks of Litsea glutinosa in ob/ob mice. Sci Rep 8:10. https://doi.org/10.1038/s41598-018-30823-w

    Article  CAS  Google Scholar 

  • Zheng J, Deng LJ, Chen MF, Xiao XZ, Xiao SW, Guo CP, Xiao GK, Bai LL, Ye WC, Zhang DM, Chen HR (2013) Elaboration of thorough simplified vinca alkaloids as antimitotic agents based on pharmacophore similarity. Eur J Med Chem 65:158–167. https://doi.org/10.1016/j.ejmech.2013.04.057

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Chan L, Zhou S (2012) Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem 19(21):3523–3531. https://doi.org/10.2174/092986712801323171

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Basilio Heredia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gutiérrez-Grijalva, E.P., López-Martínez, L.X., Contreras-Angulo, L.A., Elizalde-Romero, C.A., Heredia, J.B. (2020). Plant Alkaloids: Structures and Bioactive Properties. In: Swamy, M. (eds) Plant-derived Bioactives. Springer, Singapore. https://doi.org/10.1007/978-981-15-2361-8_5

Download citation

Publish with us

Policies and ethics