Skip to main content
Log in

Nuclear import receptors and hnRNPK mediates nuclear import and stress granule localization of SIRLOIN

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The majority of lncRNAs and a small fraction of mRNAs localize in the cell nucleus to exert their functions. A SIRLOIN RNA motif was previously reported to drive its nuclear localization by the RNA-binding protein hnRNPK. However, the underlying mechanism remains unclear. Here, we report crystal structures of hnRNPK in complex with SIRLOIN, and with the nuclear import receptor (NIR) Impα1, respectively. The protein hnRNPK bound to SIRLOIN with multiple weak interactions, and interacted Impα1 using an independent high-affinity site. Forming a complex with hnRNPK and Impα1 was essential for the nuclear import and stress granule localization of SIRLOIN in semi-permeabilized cells. Nuclear import of SIRLOIN enhanced with increasing NIR concentrations, but its stress granule localization peaked at a low NIR concentration. Collectively, we propose a mechanism of SIRLOIN localization, in which NIRs functioned as drivers/regulators, and hnRNPK as an adaptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The structure factor and atomic coordinates have been deposited in the Protein Data Bank (PDB) with accession codes 7CRE and 7CRU.

Code availability

Not applicable.

References

  1. Kapranov P et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 361:1484–1488

    Article  Google Scholar 

  2. Flynn RA, Chang HY (2014) Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14:752–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Statello L, Guo CJ, Chen LL, Huarte M (2020) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22:96–118

    Article  PubMed  Google Scholar 

  4. Chen LL (2016) Linking long noncoding RNA localization and function. Trends Biochem Sci 41:761–772

    Article  CAS  PubMed  Google Scholar 

  5. Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Butti Z, Patten SA (2019) RNA dysregulation in amyotrophic lateral sclerosis. Front Genet 9:712

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lubelsky Y, Ulitsky I (2018) Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells. Nature 555:107–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu Y et al (2019) New insights into the interplay between non-coding RNAs and RNA-binding protein HnRNPK in regulating cellular functions. Cells 8:62

    Article  CAS  PubMed Central  Google Scholar 

  9. Wang Z et al (2020) The emerging roles of hnRNPK. J Cell Physiol 235:1995–2008

    Article  CAS  PubMed  Google Scholar 

  10. Xu Y et al (2019) Post-translational modification control of RNA-binding protein hnRNPK function. Open Biol 9:180239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Michael WM, Eder PS, Dreyfuss G (1997) The K nuclear shuttling domain: a novel signal for nuclear import and nuclear export in the hnRNP K protein. EMBO J 16(12):3578–3598

    Article  Google Scholar 

  12. Hutchins EJ, Belrose JL, Szaro BG (2016) A novel role for the nuclear localization signal in regulating hnRNP K protein stability in vivo. Biochem Biophys Res Commun 478:772–776

    Article  CAS  PubMed  Google Scholar 

  13. Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH (2007) Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem 282:5101–5105

    Article  CAS  PubMed  Google Scholar 

  14. Youn JY et al (2019) Properties of stress granule and P-body proteomes. Mol Cell 76:286–294

    Article  CAS  PubMed  Google Scholar 

  15. Chang WL, Tarn WY (2009) A role for transportin in deposition of TTP to cytoplasmic RNA granules and mRNA decay. Nucleic Acids Res 37:6600–6612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moujalled D et al (2015) Phosphorylation of hnRNP K by cyclin-dependent kinase 2 controls cytosolic accumulation of TDP-43. Hum Mol Genet 24:1655–1669

    Article  CAS  PubMed  Google Scholar 

  17. Khong A, Matheny T, Jain S, Mitchell SF, Wheeler JR, Parker R (2017) The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol Cell 68:808-820 e805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang K et al (2018) Stress granule assembly disrupts nucleocytoplasmic transport. Cell 173:958-971 e917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yoga YM et al (2012) Contribution of the first K-homology domain of poly(C)-binding protein 1 to its affinity and specificity for C-rich oligonucleotides. Nucleic Acids Res 40:5101–5114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martin EW et al (2020) Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367:694–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao Y et al (2019) Multivalent m(6)A motifs promote phase separation of YTHDF proteins. Cell Res 29:767–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Backe PH, Messias AC, Ravelli RB, Sattler M, Cusack S (2005) X-ray crystallographic and NMR studies of the third KH domain of hnRNP K in complex with single-stranded nucleic acids. Structure 13:1055–1067

    Article  CAS  PubMed  Google Scholar 

  23. Braddock DT, Baber JL, Levens D, Clore GM (2002) Molecular basis of sequence-specific single-stranded DNA recognition by KH domains: solution structure of a complex between hnRNP K KH3 and single-stranded DNA. EMBO J 21:3476–3485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakamoto MY, Lammer NC, Batey RT, Wuttke DS (2020) hnRNPK recognition of the B motif of Xist and other biological RNAs. Nucleic Acids Res 48:9320–9335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jumper J et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shukla CJ et al (2018) High-throughput identification of RNA nuclear enrichment sequences. EMBO J 37:e98452

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lubelsky Y, Zuckerman B, Ulitsky I (2021) High-resolution mapping of function and protein binding in an RNA nuclear enrichment sequence. EMBO J 40:e106357

    Article  CAS  PubMed  Google Scholar 

  28. Vauquelin G, Charlton SJ (2013) Exploring avidity: understanding the potential gains in functional affinity and target residence time of bivalent and heterobivalent ligands. Br J Pharmacol 168:1771–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nicastro G, Taylor IA, Ramos A (2015) KH–RNA interactions: back in the groove. Curr Opin Struct Biol 30:63–70

    Article  CAS  PubMed  Google Scholar 

  30. Bomsztyk K, Denisenko O, Ostrowski J (2004) hnRNP K: one protein multiple processes. BioEssays 26:629–638

    Article  CAS  PubMed  Google Scholar 

  31. Liang P et al (2013) KPNB1, XPO7 and IPO8 mediate the translocation ofNF-kappaB/p65 into the nucleus. Traffic 14:1132–1143

    CAS  PubMed  Google Scholar 

  32. Kimura M, Morinaka Y, Imai K, Kose S, Horton P, Imamoto N (2017) Extensive cargo identification reveals distinct biological roles of the 12 importin pathways. Elife 6:e21184

    Article  PubMed  PubMed Central  Google Scholar 

  33. Baade I et al (2021) The RNA-binding protein FUS is chaperoned and imported into the nucleus by a network of import receptors. J Biol Chem 296:100659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bourgeois B et al (2020) Nonclassical nuclear localization signals mediate nuclear import of CIRBP. Proc Natl Acad Sci USA 117:8503–8514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hutten S et al (2020) Nuclear import receptors directly bind to arginine-rich dipeptide repeat proteins and suppress their pathological interactions. Cell Rep 33:108538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Habelhah H et al (2001) ERK phosphorylation drives cytoplasmic accumulation of hnRNP-K and inhibition of mRNA translation. Nat Cell Biol 3:325–330

    Article  CAS  PubMed  Google Scholar 

  37. Zappa F et al (2019) The TRAPP complex mediates secretion arrest induced by stress granule assembly. EMBO J 38:e101704

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bridges MC, Daulagala AC, Kourtidis A (2021) LNCcation: lncRNA localization and function. J Cell Biol 220:e202009045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tong C, Yin Y (2021) Localization of RNAs in the nucleus: cis- and trans-regulation. RNA Biol 8:1–14

    Google Scholar 

  40. Landerer E et al (2011) Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells. Cell Oncol (Dordr) 34:297–305

    Article  CAS  Google Scholar 

  41. Kramer EB, Hopper AK (2013) Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 110:21042–21047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baserga SJ, Gilmore-Hebert M, Yang XW (1992) Distinct molecular signals for nuclear import of the nucleolar snRNA, U3. Genes Dev 6:1120–1130

    Article  CAS  PubMed  Google Scholar 

  43. O’Neill RE, Jaskunas R, Blobel G, Palese P, Moroianu J (1995) Nuclear import of influenza virus RNA can be mediated by viral nucleoprotein and transport factors required for protein import. J Biol Chem 270:22701–22704

    Article  CAS  PubMed  Google Scholar 

  44. Rudt F, Pieler T (1996) Cytoplasmic retention and nuclear import of 5S ribosomal RNA containing RNPs. EMBO J 15:1383–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Baade I, Kehlenbach RH (2019) The cargo spectrum of nuclear transport receptors. Curr Opin Cell Biol 58:1–7

    Article  CAS  PubMed  Google Scholar 

  46. Guo L et al (2018) Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell 173:677-692 e620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bampton A, Gittings LM, Fratta P, Lashley T, Gatt A (2020) The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathol 140:599–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Naganuma T, Nakagawa S, Tanigawa A, Sasaki YF, Goshima N, Hirose T (2012) Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J 31:4020–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schuster BS et al (2018) Controllable protein phase separation and modular recruitment to form responsive membraneless organelles. Nat Commun 9:2985

    Article  PubMed  PubMed Central  Google Scholar 

  50. Loughlin FE et al (2019) The solution structure of FUS bound to RNA reveals a bipartite mode of RNA recognition with both sequence and shape specificity. Mol Cell 73:490-504 e496

    Article  CAS  PubMed  Google Scholar 

  51. Pitchiaya S et al (2019) Dynamic recruitment of single RNAs to processing bodies depends on RNA functionality. Mol Cell 74:521-533 e526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guo L, Fare CM, Shorter J (2019) Therapeutic dissolution of aberrant phases by nuclear-import receptors. Trends Cell Biol 29:308–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang QS et al. (2018) Upgrade of macromolecular crystallography beamline BL17U1 at SSRF. Nucl Sci Tech 29:68

    Article  Google Scholar 

Download references

Acknowledgements

We thank the beamline staff from SSRF beamline BL17U1 [53] and Dr. Rundong Zhang (SKLB) for help in RNA transcription. This study was supported by the 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: QS, Methodology: QS, JY, YT, CS, Investigation: JY, QS, Visualization: QS, JY, Supervision: QS, QZ, HX, DJ, YT, Writing—original draft: QS, JY, Writing—review and editing: QS.

Corresponding author

Correspondence to Qingxiang Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have read and approved the manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2837 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Tu, Y., Shen, C. et al. Nuclear import receptors and hnRNPK mediates nuclear import and stress granule localization of SIRLOIN. Cell. Mol. Life Sci. 78, 7617–7633 (2021). https://doi.org/10.1007/s00018-021-03992-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03992-7

Keywords

Navigation