Skip to main content

Advertisement

Log in

Role of inflammatory microenvironment: potential implications for improved breast cancer nano-targeted therapy

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Tumor cells, inflammatory cells and chemical factors work together to mediate complex signaling networks, which forms inflammatory tumor microenvironment (TME). The development of breast cancer is closely related to the functional activities of TME. This review introduces the origins of cancer-related chronic inflammation and the main constituents of inflammatory microenvironment. Inflammatory microenvironment plays an important role in breast cancer growth, metastasis, drug resistance and angiogenesis through multifactorial mechanisms. It is suggested that inflammatory microenvironment contributes to providing possible mechanisms of drug action and modes of drug transport for anti-cancer treatment. Nano-drug delivery system (NDDS) becomes a popular topic for optimizing the design of tumor targeting drugs. It is seen that with the development of therapeutic approaches, NDDS can be used to achieve drug-targeted delivery well across the biological barriers and into cells, resulting in superior bioavailability, drug dose reduction as well as off-target side effect elimination. This paper focuses on the review of modulation mechanisms of inflammatory microenvironment and combination with nano-targeted therapeutic strategies, providing a comprehensive basis for further research on breast cancer prevention and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

TME:

Tumor microenvironment

CAFs:

Cancer-associated fibroblasts

IL-6:

Interleukin-6

TNF-α:

Tumor necrosis factor-α

NF-κB:

Nuclear factor-κB

STAT3:

Signal transducer and activator of transcription 3

PGE2:

Prostaglandin E2

HIF1α:

Hypoxia-inducible factor 1α

Th2:

Helper T cell 2

DCs:

Dendritic cells

MDR:

Multi-drug resistance

MDSCs:

Myeloid-derived suppressor cells

Tregs:

Regulatory T cells

ECM:

Extracellular matrix

IFN-γ:

Interferon-γ

VEGF:

Vascular endothelial growth factor

IFP:

Interstitial pressure

LPS:

Lipopolysaccharide

MMPs:

Matrix metalloproteinases

MSCs:

Mesenchymal stem cells

EMT:

Epithelial mesenchymal transition

Wnt:

Wingless/Integrated

IKK:

Inhibitor of κb kinase

TCR:

T cell receptor

Tfh:

Follicular helper T cell

JAK:

Janus kinase

mIL-6R:

Transmembrane IL-6 receptor

SIL-6R:

Soluble IL-6 receptor

Apcs:

Antigen-presenting cells

MAPK:

Mitogen-activated protein kinase

PI3K/AKT:

Phosphoinositide 3-kinase/protein kinase B

TNBC:

Triple-negative breast cancer

miRNA:

MicroRNA

ncRNA:

Non-coding RNA

CSCs:

Cancer stem cells

NK:

Natural killer cell

ADR:

Adriamycin

NDDS:

Nano-drug delivery system

RES:

Reticuloendothelial system

MPS:

Mononuclear phagocytic system

EPR:

Enhanced permeability and retention

DOX:

Doxorubicin

PTX:

Paclitaxel

BBB:

Blood–brain barrier

HER2:

Human epidermal growth factor receptor-2

EGFR:

Epidermal growth factor receptor

HA:

Hyaluronic acid

FR:

Folic acid receptor

FA:

Folic acid

RGD:

Arginine-glycine-aspartic

ER:

Estrogen receptor

PR:

Progesterone receptor

References

  1. Langley RR, Fidler IJ (2011) The seed and soil hypothesis revisited–the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 128(11):2527–2535. https://doi.org/10.1002/ijc.26031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Silva AL, Faria M, Matos P (2020) Inflammatory microenvironment modulation of alternative splicing in cancer: a way to adapt. In: Serpa J (ed) Tumor microenvironment: the main driver of metabolic adaptation. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-34025-4_13

    Chapter  Google Scholar 

  3. Huang A, Cao S, Tang L (2017) The tumor microenvironment and inflammatory breast cancer. J Cancer 8(10):1884–1891. https://doi.org/10.7150/jca.17595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marmé D (2018) Tumor angiogenesis: a key target for cancer therapy. Oncol Res Treat 41(4):164–164. https://doi.org/10.1159/000488340

    Article  PubMed  Google Scholar 

  5. Brueggemeier RW, Hackett JC, Diaz-Cruz ES (2005) Aromatase inhibitors in the treatment of breast cancer. Endocr Rev 26(3):331–345. https://doi.org/10.1210/er.2004-0015

    Article  CAS  PubMed  Google Scholar 

  6. Camacho L, Dasgupta A, Jiralerspong S (2015) Metformin in breast cancer—an evolving mystery. Breast Cancer Res 17(1):88–88. https://doi.org/10.1186/s13058-015-0598-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hua S, de Matos MBC, Metselaar JM, Storm G (2018) Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol 9:790–790. https://doi.org/10.3389/fphar.2018.00790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Murata M (2018) Inflammation and cancer. Environ Health Prev Med 23(1):50–50. https://doi.org/10.1186/s12199-018-0740-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qu X, Tang Y, Hua S (2018) Immunological approaches towards cancer and inflammation: a cross talk. Front Immunol 9:563–563. https://doi.org/10.3389/fimmu.2018.00563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Raposo TP, Beirão BCB, Pang LY, Queiroga FL, Argyle DJ (2015) Inflammation and cancer: till death tears them apart. Vet J 205(2):161–174. https://doi.org/10.1016/j.tvjl.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  11. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  12. Yu T, Di G (2017) Role of tumor microenvironment in triple-negative breast cancer and its prognostic significance. Chin J Cancer Res 29(3):237–252. https://doi.org/10.21147/j.issn.1000-9604.2017.03.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nisticò P, Ciliberto G (2020) Biological mechanisms linked to inflammation in cancer: discovery of tumor microenvironment-related biomarkers and their clinical application in solid tumors. Int J Biol Markers 35(1_suppl):8–11. https://doi.org/10.1177/1724600820906155

    Article  PubMed  Google Scholar 

  14. Soysal SD, Tzankov A, Muenst SE (2015) Role of the tumor microenvironment in breast cancer. Pathobiology 82(3–4):142–152. https://doi.org/10.1159/000430499

    Article  CAS  PubMed  Google Scholar 

  15. Cronkite DA, Strutt TM (2018) The regulation of inflammation by innate and adaptive lymphocytes. J Immunol Res 2018:1467538–1467538. https://doi.org/10.1155/2018/1467538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Comen EA, Bowman RL, Kleppe M (2018) Underlying causes and therapeutic targeting of the inflammatory tumor microenvironment. Front Cell Dev Biol 6:56–56. https://doi.org/10.3389/fcell.2018.00056

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, Hynes RO, Jain RK, Janowitz T, Jorgensen C, Kimmelman AC, Kolonin MG, Maki RG, Powers RS, Puré E, Ramirez DC, Scherz-Shouval R, Sherman MH, Stewart S, Tlsty TD, Tuveson DA, Watt FM, Weaver V, Weeraratna AT, Werb Z (2020) A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 20(3):174–186. https://doi.org/10.1038/s41568-019-0238-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burkholder B, Huang R-Y, Burgess R, Luo S, Jones VS, Zhang W, Lv Z-Q, Gao C-Y, Wang B-L, Zhang Y-M (1845) Huang R-P (2014) Tumor-induced perturbations of cytokines and immune cell networks. Biochimica et Biophysica Acta (BBA) Rev Cancer 2:182–201. https://doi.org/10.1016/j.bbcan.2014.01.004

    Article  CAS  Google Scholar 

  19. Eftekhari R, Esmaeili R, Mirzaei R, Bidad K, de Lima S, Ajami M, Shirzad H, Hadjati J, Majidzadeh-A K (2017) Study of the tumor microenvironment during breast cancer progression. Cancer Cell Int 17:123–123. https://doi.org/10.1186/s12935-017-0492-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Munn DH, Sharma MD, Johnson TS (2018) Treg destabilization and reprogramming: implications for cancer immunotherapy. Cancer Res 78(18):5191–5199. https://doi.org/10.1158/0008-5472.CAN-18-1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salimifard S, Masjedi A, Hojjat-Farsangi M, Ghalamfarsa G, Irandoust M, Azizi G, Mohammadi H, Keramati MR, Jadidi-Niaragh F (2020) Cancer associated fibroblasts as novel promising therapeutic targets in breast cancer. Pathol Res Pract 216(5):152915. https://doi.org/10.1016/j.prp.2020.152915

    Article  CAS  PubMed  Google Scholar 

  22. Vetsika E-K, Koukos A, Kotsakis A (2019) Myeloid-Derived suppressor cells: major figures that shape the immunosuppressive and angiogenic network in cancer. Cells 8(12):1647. https://doi.org/10.3390/cells8121647

    Article  CAS  PubMed Central  Google Scholar 

  23. Feichtinger RG, Lang R (2019) Targeting L-lactate metabolism to overcome resistance to immune therapy of melanoma and other tumor entities. J Oncol 2019:2084195–2084195. https://doi.org/10.1155/2019/2084195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fernandes JV, Cobucci RNO, Jatobá CAN, de Medeiros Fernandes TAA, de Azevedo JWV, de Araújo JMG (2015) The role of the mediators of inflammation in cancer development. Pathol Oncol Res 21(3):527–534. https://doi.org/10.1007/s12253-015-9913-z

    Article  CAS  PubMed  Google Scholar 

  25. da Cunha BR, Domingos C, Stefanini ACB, Henrique T, Polachini GM, Castelo-Branco P, Tajara EH (2019) Cellular interactions in the tumor microenvironment: the role of secretome. J Cancer 10(19):4574–4587. https://doi.org/10.7150/jca.21780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lins Ferreira V, Borba H, Bonetti A, Leonart L, Pontarolo R (2018) Cytokines and interferons: types and functions. IntechOpen, London. https://doi.org/10.5772/intechopen.74550

    Book  Google Scholar 

  27. Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI, Nava-Castro KE, Castro JI, Morales-Montor J (2015) The role of cytokines in breast cancer development and progression. J Interferon Cytokine Res 35(1):1–16. https://doi.org/10.1089/jir.2014.0026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nagarsheth N, Wicha MS, Zou W (2017) Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 17(9):559–572. https://doi.org/10.1038/nri.2017.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen Y, Tan W, Wang C (2018) Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition. Onco Targets Ther 11:3817–3826. https://doi.org/10.2147/OTT.S168317

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z (2019) Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 26(1):78–78. https://doi.org/10.1186/s12929-019-0568-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Petty AJ, Yang Y (2017) Tumor-associated macrophages: implications in cancer immunotherapy. Immunotherapy 9(3):289–302. https://doi.org/10.2217/imt-2016-0135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shrihari TG (2017) Dual role of inflammatory mediators in cancer. Ecancermedicalscience 11:721–721. https://doi.org/10.3332/ecancer.2017.721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gonzalez H, Hagerling C, Werb Z (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 32(19–20):1267–1284. https://doi.org/10.1101/gad.314617.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Williams CB, Yeh ES, Soloff AC (2016) Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer 2:15025. https://doi.org/10.1038/npjbcancer.2015.25

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu T, Han C, Wang S, Fang P, Ma Z, Xu L, Yin R (2019) Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J Hematol Oncol 12(1):86. https://doi.org/10.1186/s13045-019-0770-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu L, Liu L, Yao HH, Zhu ZQ, Ning ZL, Huang Q (2016) Stromal myofibroblasts are associated with poor prognosis in solid cancers: a meta-analysis of published studies. PLoS ONE 11(7):e0159947–e0159947. https://doi.org/10.1371/journal.pone.0159947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M, Worthley DL (2019) Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol 16(5):282–295. https://doi.org/10.1038/s41575-019-0115-0

    Article  PubMed  Google Scholar 

  38. Yan Y, Chen X, Wang X, Zhao Z, Hu W, Zeng S, Wei J, Yang X, Qian L, Zhou S, Sun L, Gong Z, Xu Z (2019) The effects and the mechanisms of autophagy on the cancer-associated fibroblasts in cancer. J Exp Clin Cancer Res 38(1):171–171. https://doi.org/10.1186/s13046-019-1172-5

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16(9):582–598. https://doi.org/10.1038/nrc.2016.73

    Article  CAS  PubMed  Google Scholar 

  40. Pillay J, den Braber I, Vrisekoop N, Kwast LM, de Boer RJ, Borghans JAM, Tesselaar K, Koenderman L (2010) In vivo labeling with 2H2O reveals a human neutrophil lifespan of 54 days. Blood 116(4):625–627. https://doi.org/10.1182/blood-2010-01-259028

    Article  CAS  PubMed  Google Scholar 

  41. Selders GS, Fetz AE, Radic MZ, Bowlin GL (2017) An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen Biomater 4(1):55–68. https://doi.org/10.1093/rb/rbw041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mittal S, Brown NJ, Holen I (2018) The breast tumor microenvironment: role in cancer development, progression and response to therapy. Expert Rev Mol Diagn 18(3):227–243. https://doi.org/10.1080/14737159.2018.1439382

    Article  CAS  PubMed  Google Scholar 

  43. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194. https://doi.org/10.1016/j.ccr.2009.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bronte V, Brandau S, Chen S-H, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, Rodriguez PC, Sica A, Umansky V, Vonderheide RH, Gabrilovich DI (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150–12150. https://doi.org/10.1038/ncomms12150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. https://doi.org/10.1038/nri2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ai L, Mu S, Wang Y, Wang H, Cai L, Li W, Hu Y (2018) Prognostic role of myeloid-derived suppressor cells in cancers: a systematic review and meta-analysis. BMC Cancer 18(1):1220–1220. https://doi.org/10.1186/s12885-018-5086-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park MH, Hong JT (2016) Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells 5(2):15. https://doi.org/10.3390/cells5020015

    Article  CAS  PubMed Central  Google Scholar 

  48. Taniguchi K, Karin M (2018) NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18(5):309–324. https://doi.org/10.1038/nri.2017.142

    Article  CAS  PubMed  Google Scholar 

  49. Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zaidi MR (2019) The interferon-gamma paradox in cancer. J Interferon Cytokine Res 39(1):30–38. https://doi.org/10.1089/jir.2018.0087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McGeachy MJ, Cua DJ, Gaffen SL (2019) The IL-17 family of cytokines in health and disease. Immunity 50(4):892–906. https://doi.org/10.1016/j.immuni.2019.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xia Y, Shen S, Verma IM (2014) NF-κB, an active player in human cancers. Cancer Immunol Res 2(9):823–830. https://doi.org/10.1158/2326-6066.CIR-14-0112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA (2019) Cell type-specific roles of nf-κb linking inflammation and thrombosis. Front Immunol 10:85–85. https://doi.org/10.3389/fimmu.2019.00085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qin J-J, Yan L, Zhang J, Zhang W-D (2019) STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. J Exp Clin Cancer Res 38(1):195–195. https://doi.org/10.1186/s13046-019-1206-z

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kim B-H, Yi EH, Ye S-K (2016) Signal transducer and activator of transcription 3 as a therapeutic target for cancer and the tumor microenvironment. Arch Pharmacal Res 39(8):1085–1099. https://doi.org/10.1007/s12272-016-0795-8

    Article  CAS  Google Scholar 

  56. Lee H, Jeong AJ, Ye S-K (2019) Highlighted STAT3 as a potential drug target for cancer therapy. BMB Rep 52(7):415–423. https://doi.org/10.5483/BMBRep.2019.52.7.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Masjedi A, Hashemi V, Hojjat-Farsangi M, Ghalamfarsa G, Azizi G, Yousefi M, Jadidi-Niaragh F (2018) The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed Pharmacother 108:1415–1424. https://doi.org/10.1016/j.biopha.2018.09.177

    Article  CAS  PubMed  Google Scholar 

  58. Heo T-H, Wahler J, Suh N (2016) Potential therapeutic implications of IL-6/IL-6R/gp130-targeting agents in breast cancer. Oncotarget 7(13):15460–15473. https://doi.org/10.18632/oncotarget.7102

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kitamura H, Ohno Y, Toyoshima Y, Ohtake J, Homma S, Kawamura H, Takahashi N, Taketomi A (2017) Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy. Cancer Sci 108(10):1947–1952. https://doi.org/10.1111/cas.13332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mitani H, Katayama N, Araki H, Ohishi K, Kobayashi K, Suzuki H, Nishii K, Masuya M, Yasukawa K, Minami N, Shiku H (2000) Activity of interleukin 6 in the differentiation of monocytes to macrophages and dendritic cells. Br J Haematol 109(2):288–295. https://doi.org/10.1046/j.1365-2141.2000.02020.x

    Article  CAS  PubMed  Google Scholar 

  61. Van Overmeire E, Stijlemans B, Heymann F, Keirsse J, Morias Y, Elkrim Y, Brys L, Abels C, Lahmar Q, Ergen C, Vereecke L, Tacke F, De Baetselier P, Van Ginderachter JA, Laoui D (2016) M-CSF and GM-CSF receptor signaling differentially regulate monocyte maturation and macrophage polarization in the tumor microenvironment. Cancer Res 76(1):35. https://doi.org/10.1158/0008-5472.CAN-15-0869

    Article  CAS  PubMed  Google Scholar 

  62. Lippitz BE, Harris RA (2016) Cytokine patterns in cancer patients: a review of the correlation between interleukin 6 and prognosis. Oncoimmunology 5(5):e1093722–e1093722. https://doi.org/10.1080/2162402X.2015.1093722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim G, Ouzounova M, Quraishi AA, Davis A, Tawakkol N, Clouthier SG, Malik F, Paulson AK, D’Angelo RC, Korkaya S, Baker TL, Esen ES, Prat A, Liu S, Kleer CG, Thomas DG, Wicha MS, Korkaya H (2015) SOCS3-mediated regulation of inflammatory cytokines in PTEN and p53 inactivated triple negative breast cancer model. Oncogene 34(6):671–680. https://doi.org/10.1038/onc.2014.4

    Article  CAS  PubMed  Google Scholar 

  64. Johnson DE, O’Keefe RA, Grandis JR (2018) Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 15(4):234–248. https://doi.org/10.1038/nrclinonc.2018.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Atsumi T, Singh R, Sabharwal L, Bando H, Meng J, Arima Y, Yamada M, Harada M, Jiang J-J, Kamimura D, Ogura H, Hirano T, Murakami M (2014) Inflammation amplifier, a new paradigm in cancer biology. Cancer Res 74(1):8. https://doi.org/10.1158/0008-5472.CAN-13-2322

    Article  CAS  PubMed  Google Scholar 

  66. Do HTT, Lee CH, Cho J (2020) Chemokines and their receptors: multifaceted roles in cancer progression and potential value as cancer prognostic markers. Cancers (Basel) 12(2):287. https://doi.org/10.3390/cancers12020287

    Article  CAS  Google Scholar 

  67. Moore BB, Kunkel SL (2019) Attracting attention: discovery of IL-8/CXCL8 and the birth of the chemokine field. J Immunol 202(1):3–4. https://doi.org/10.4049/jimmunol.1801485

    Article  CAS  PubMed  Google Scholar 

  68. Kreckel J, Anany MA, Siegmund D, Wajant H (2019) TRAF2 Controls death receptor-induced caspase-8 processing and facilitates proinflammatory signaling. Front Immunol 10:2024–2024. https://doi.org/10.3389/fimmu.2019.02024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Derakhshan A, Chen Z, Van Waes C (2017) Therapeutic small molecules target inhibitor of apoptosis proteins in cancers with deregulation of extrinsic and intrinsic cell death pathways. Clin Cancer Res 23(6):1379–1387. https://doi.org/10.1158/1078-0432.CCR-16-2172

    Article  CAS  PubMed  Google Scholar 

  70. Oh Y-T, Yue P, Sun S-Y (2017) DR5 suppression induces sphingosine-1-phosphate-dependent TRAF2 polyubiquitination, leading to activation of JNK/AP-1 and promotion of cancer cell invasion. Cell Commun Signal 15(1):18–18. https://doi.org/10.1186/s12964-017-0174-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang L, Blackwell K, Workman LM, Gibson-Corley KN, Olivier AK, Bishop GA, Habelhah H (2016) TRAF2 exerts opposing effects on basal and TNFα-induced activation of the classic IKK complex in hematopoietic cells in mice. J Cell Sci 129(7):1455–1467. https://doi.org/10.1242/jcs.180554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I (2020) The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol 43(1):1–18. https://doi.org/10.1007/s13402-019-00489-1

    Article  CAS  Google Scholar 

  73. Chew CL, Conos SA, Unal B, Tergaonkar V (2018) Noncoding RNAs: master regulators of inflammatory signaling. Trends Mol Med 24(1):66–84. https://doi.org/10.1016/j.molmed.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  74. Klinge CM (2018) Non-coding RNAs in breast cancer: intracellular and intercellular communication. Noncoding RNA 4(4):40. https://doi.org/10.3390/ncrna4040040

    Article  CAS  PubMed Central  Google Scholar 

  75. Babaei K, Shams S, Keymoradzadeh A, Vahidi S, Hamami P, Khaksar R, Norollahi SE, Samadani AA (2020) An insight of microRNAs performance in carcinogenesis and tumorigenesis; an overview of cancer therapy. Life Sci 240:117077. https://doi.org/10.1016/j.lfs.2019.117077

    Article  CAS  PubMed  Google Scholar 

  76. Feng Y-H, Tsao C-J (2016) Emerging role of microRNA-21 in cancer. Biomed Rep 5(4):395–402. https://doi.org/10.3892/br.2016.747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xiang M, Birkbak NJ, Vafaizadeh V, Walker SR, Yeh JE, Liu S, Kroll Y, Boldin M, Taganov K, Groner B, Richardson AL, Frank DA (2014) STAT3 induction of miR-146b forms a feedback loop to inhibit the NF-κB to IL-6 signaling axis and STAT3-driven cancer phenotypes. Sci Signal. https://doi.org/10.1126/scisignal.2004497

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sever R, Brugge JS (2015) Signal transduction in cancer. Cold Spring Harb Perspect Med 5(4):a006098. https://doi.org/10.1101/cshperspect.a006098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fan Y, Mao R, Yang J (2013) NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 4(3):176–185. https://doi.org/10.1007/s13238-013-2084-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kumari S, Badana AK, Malla GMM (2018) R., 2018 reactive oxygen species: a key constituent in cancer survival. Biomark Insights. https://doi.org/10.1177/1177271918755391

    Article  PubMed  PubMed Central  Google Scholar 

  81. Banerjee K, Resat H (2016) Constitutive activation of STAT3 in breast cancer cells: a review. Int J Cancer 138(11):2570–2578. https://doi.org/10.1002/ijc.29923

    Article  CAS  PubMed  Google Scholar 

  82. Rathore R, McCallum JE, Varghese E, Florea A-M, Büsselberg D (2017) Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs). Apoptosis 22(7):898–919. https://doi.org/10.1007/s10495-017-1375-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cai X, Cao C, Li J, Chen F, Zhang S, Liu B, Zhang W, Zhang X, Ye L (2017) Inflammatory factor TNF-α promotes the growth of breast cancer via the positive feedback loop of TNFR1/NF-κB (and/or p38)/p-STAT3/HBXIP/TNFR1. Oncotarget 8(35):58338–58352. https://doi.org/10.18632/oncotarget.16873

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mirzaei SA, Dinmohammadi F, Alizadeh A, Elahian F (2019) Inflammatory pathway interactions and cancer multidrug resistance regulation. Life Sci 235:116825. https://doi.org/10.1016/j.lfs.2019.116825

    Article  CAS  PubMed  Google Scholar 

  85. Guan X (2015) Cancer metastases: challenges and opportunities. Acta Pharm Sin B 5(5):402–418. https://doi.org/10.1016/j.apsb.2015.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  86. Méndez-García LA, Nava-Castro KE, Ochoa-Mercado TdL, Palacios-Arreola MI, Ruiz-Manzano RA, Segovia-Mendoza M, Solleiro-Villavicencio H, Cázarez-Martínez C, Morales-Montor J (2018) Breast cancer metastasis: are cytokines important players during its development and progression? J Interferon Cytokine Res 39(1):39–55. https://doi.org/10.1089/jir.2018.0024

    Article  CAS  PubMed  Google Scholar 

  87. Welch DR, Hurst DR (2019) Defining the Hallmarks of Metastasis. Cancer Res 79(12):3011. https://doi.org/10.1158/0008-5472.CAN-19-0458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC (2016) Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res 18(1):84–84. https://doi.org/10.1186/s13058-016-0740-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vinocha A, Grover R, Deepak R (2018) Clinical significance of interleukin-6 in diagnosis of lung, oral, esophageal, and gall bladder carcinomas. J Cancer Res Ther 14(10):758–760. https://doi.org/10.4103/0973-1482.183217

    Article  CAS  Google Scholar 

  90. Babic A, Schnure N, Neupane NP, Zaman MM, Rifai N, Welch MW, Brais LK, Rubinson DA, Morales-Oyarvide V, Yuan C, Zhang S, Poole EM, Wolpin BM, Kulke MH, Barbie DA, Wong K, Fuchs CS, Ng K (2018) Plasma inflammatory cytokines and survival of pancreatic cancer patients. Clin Transl Gastroenterol 9(4):145–145. https://doi.org/10.1038/s41424-018-0008-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Russo RC, Garcia CC, Teixeira MM, Amaral FA (2014) The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol 10(5):593–619. https://doi.org/10.1586/1744666X.2014.894886

    Article  CAS  PubMed  Google Scholar 

  92. Zhang X, Xiang J (2019) Remodeling the microenvironment before occurrence and metastasis of cancer. Int J Biol Sci 15(1):105–113. https://doi.org/10.7150/ijbs.28669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Giussani M, Merlino G, Cappelletti V, Tagliabue E, Daidone MG (2015) Tumor-extracellular matrix interactions: identification of tools associated with breast cancer progression. Semin Cancer Biol 35:3–10. https://doi.org/10.1016/j.semcancer.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  94. Pires BRB, Mencalha AL, Ferreira GM, de Souza WF, Morgado-Díaz JA, Maia AM, Corrêa S, Abdelhay ESFW (2017) NF-kappaB is involved in the regulation of EMT genes in breast cancer cells. PLoS ONE 12(1):e0169622–e0169622. https://doi.org/10.1371/journal.pone.0169622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Senthebane DA, Rowe A, Thomford NE, Shipanga H, Munro D, Mazeedi MAMA, Almazyadi HAM, Kallmeyer K, Dandara C, Pepper MS, Parker MI, Dzobo K (2017) The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. Int J Mol Sci 18(7):1586. https://doi.org/10.3390/ijms18071586

    Article  CAS  PubMed Central  Google Scholar 

  96. Correia AL, Bissell MJ (2012) The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist Updat 15(1–2):39–49. https://doi.org/10.1016/j.drup.2012.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu T, Dai Y (2017) Tumor microenvironment and therapeutic response. Cancer Lett 387:61–68. https://doi.org/10.1016/j.canlet.2016.01.043

    Article  CAS  PubMed  Google Scholar 

  98. Sun Y, Zhu D, Chen F, Qian M, Wei H, Chen W, Xu J (2016) SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment. Oncogene 35(33):4321–4334. https://doi.org/10.1038/onc.2015.494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yoshida GJ, Azuma A, Miura Y, Orimo A (2019) Activated fibroblast program orchestrates tumor initiation and progression; molecular mechanisms and the associated therapeutic strategies. Int J Mol Sci 20(9):2256. https://doi.org/10.3390/ijms20092256

    Article  CAS  PubMed Central  Google Scholar 

  100. Deng YW, Hao WJ, Li YW, Li YX, Zhao BC, Lu D (2018) Hsa-miRNA-143-3p reverses multidrug resistance of triple-negative breast cancer by inhibiting the expression of its target protein cytokine-induced apoptosis inhibitor 1 in vivo. J Breast Cancer 21(3):251–258. https://doi.org/10.4048/jbc.2018.21.e40

    Article  PubMed  PubMed Central  Google Scholar 

  101. Godwin P, Baird AM, Heavey S, Barr MP, O’Byrne KJ, Gately K (2013) Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol 3:120–120. https://doi.org/10.3389/fonc.2013.00120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen Z, Shi T, Zhang L, Zhu P, Deng M, Huang C, Hu T, Jiang L, Li J (2016) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade. Cancer Lett 370(1):153–164. https://doi.org/10.1016/j.canlet.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  103. Niu J, Xue A, Chi Y, Xue J, Wang W, Zhao Z, Fan M, Yang CH, Shao Z-M, Pfeffer LM, Wu J, Wu Z-H (2016) Induction of miRNA-181a by genotoxic treatments promotes chemotherapeutic resistance and metastasis in breast cancer. Oncogene 35(10):1302–1313. https://doi.org/10.1038/onc.2015.189

    Article  CAS  PubMed  Google Scholar 

  104. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410. https://doi.org/10.1038/nrc1093

    Article  CAS  PubMed  Google Scholar 

  105. Banys-Paluchowski M, Witzel I, Riethdorf S, Pantel K, Rack B, Janni W, Fasching PA, Aktas B, Kasimir-Bauer S, Hartkopf A, Solomayer E-F, Fehm T, Müller V (2018) The clinical relevance of serum vascular endothelial growth factor (VEGF) in correlation to circulating tumor cells and other serum biomarkers in patients with metastatic breast cancer. Breast Cancer Res Treat 172(1):93–104. https://doi.org/10.1007/s10549-018-4882-z

    Article  CAS  PubMed  Google Scholar 

  106. Lee P, Chandel NS, Simon MC (2020) Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol 21(5):268–283. https://doi.org/10.1038/s41580-020-0227-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tawara K, Scott H, Emathinger J, Ide A, Fox R, Greiner D, LaJoie D, Hedeen D, Nandakumar M, Oler AJ, Holzer R, Jorcyk C (2019) Co-expression of VEGF and IL-6 family cytokines is associated with decreased survival in HER2 negative breast cancer patients: subtype-specific IL-6 family cytokine-mediated VEGF secretion. Transl Oncol 12(2):245–255. https://doi.org/10.1016/j.tranon.2018.10.004

    Article  PubMed  Google Scholar 

  108. Allahverdiyev AM, Parlar E, Dinparvar S, Bagirova M, Abamor EŞ (2018) Current aspects in treatment of breast cancer based of nanodrug delivery systems and future prospects. Artif Cells Nanomed Biotechnol 46(sup3):S755–S762. https://doi.org/10.1080/21691401.2018.1511573

    Article  CAS  PubMed  Google Scholar 

  109. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941–951. https://doi.org/10.1038/nbt.3330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu R, Hu C, Yang Y, Zhang J, Gao H (2019) Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm Sin B 9(2):410–420. https://doi.org/10.1016/j.apsb.2018.09.001

    Article  PubMed  Google Scholar 

  111. Gileva A, Sarychev G, Kondrya U, Mironova M, Sapach A, Selina O, Budanova U, Burov S, Sebyakin Y, Markvicheva E (2019) Lipoamino acid-based cerasomes for doxorubicin delivery: Preparation and in vitro evaluation. Mater Sci Eng C 100:724–734. https://doi.org/10.1016/j.msec.2019.02.111

    Article  CAS  Google Scholar 

  112. Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF (2019) An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol 71(8):1185–1198. https://doi.org/10.1111/jphp.13098

    Article  CAS  PubMed  Google Scholar 

  113. Greenlee H, DuPont-Reyes MJ, Balneaves LG, Carlson LE, Cohen MR, Deng G, Johnson JA, Mumber M, Seely D, Zick SM, Boyce LM, Tripathy D (2017) Clinical practice guidelines on the evidence-based use of integrative therapies during and after breast cancer treatment. CA Cancer J Clin 67(3):194–232. https://doi.org/10.3322/caac.21397

    Article  PubMed  PubMed Central  Google Scholar 

  114. Martins D, Schmitt F (2018) Microenvironment in breast tumorigenesis: Friend or foe? Histol Histopathol 34:18021. https://doi.org/10.14670/HH-18-021

    Article  Google Scholar 

  115. Al Tameemi W, Dale TP, Al-Jumaily RMK, Forsyth NR (2019) Hypoxia-modified cancer cell metabolism. Front Cell Dev Biol 7:4–4. https://doi.org/10.3389/fcell.2019.00004

    Article  PubMed  PubMed Central  Google Scholar 

  116. Thakkar S, Sharma D, Kalia K, Tekade RK (2020) Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: a review. Acta Biomater 101:43–68. https://doi.org/10.1016/j.actbio.2019.09.009

    Article  CAS  PubMed  Google Scholar 

  117. Wang Z, Li X, Wang D, Zou Y, Qu X, He C, Deng Y, Jin Y, Zhou Y, Zhou Y, Liu Y (2017) Concurrently suppressing multidrug resistance and metastasis of breast cancer by co-delivery of paclitaxel and honokiol with pH-sensitive polymeric micelles. Acta Biomater 62:144–156. https://doi.org/10.1016/j.actbio.2017.08.027

    Article  CAS  PubMed  Google Scholar 

  118. Zheng G, Zheng M, Yang B, Fu H, Li Y (2019) Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed Pharmacother 116:109006. https://doi.org/10.1016/j.biopha.2019.109006

    Article  CAS  PubMed  Google Scholar 

  119. Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z (2016) Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials 85:152–167. https://doi.org/10.1016/j.biomaterials.2016.01.061

    Article  CAS  PubMed  Google Scholar 

  120. Tang S, Meng Q, Sun H, Su J, Yin Q, Zhang Z, Yu H, Chen L, Gu W, Li Y (2017) Dual pH-sensitive micelles with charge-switch for controlling cellular uptake and drug release to treat metastatic breast cancer. Biomaterials 114:44–53. https://doi.org/10.1016/j.biomaterials.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  121. Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I (2019) Hypoxia: overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci 20(24):6140. https://doi.org/10.3390/ijms20246140

    Article  CAS  PubMed Central  Google Scholar 

  122. Li Y, Lu A, Long M, Cui L, Chen Z, Zhu L (2019) Nitroimidazole derivative incorporated liposomes for hypoxia-triggered drug delivery and enhanced therapeutic efficacy in patient-derived tumor xenografts. Acta Biomater 83:334–348. https://doi.org/10.1016/j.actbio.2018.10.029

    Article  CAS  PubMed  Google Scholar 

  123. Zhang R, Li Y, Zhang M, Tang Q, Zhang X (2016) Hypoxia-responsive drug–drug conjugated nanoparticles for breast cancer synergistic therapy. RSC Adv 6(36):30268–30276. https://doi.org/10.1039/C6RA01560C

    Article  CAS  Google Scholar 

  124. Li T, Dong H, Zhang C, Mo R (2018) Cell-based drug delivery systems for biomedical applications. Nano Res 11(10):5240–5257. https://doi.org/10.1007/s12274-018-2179-5

    Article  CAS  Google Scholar 

  125. Krueger TEG, Thorek DLJ, Denmeade SR, Isaacs JT, Brennen WN (2018) Concise review: mesenchymal stem cell-based drug delivery: the good, the bad, the ugly, and the promise. Stem Cells Transl Med 7(9):651–663. https://doi.org/10.1002/sctm.18-0024

    Article  PubMed  PubMed Central  Google Scholar 

  126. Pi F, Binzel DW, Lee TJ, Li Z, Sun M, Rychahou P, Li H, Haque F, Wang S, Croce CM, Guo B, Evers BM, Guo P (2018) Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat Nanotechnol 13(1):82–89. https://doi.org/10.1038/s41565-017-0012-z

    Article  CAS  PubMed  Google Scholar 

  127. Zargar SM, Hafshejani DK, Eskandarinia A, Rafienia M, Kharazi AZ (2019) A review of controlled drug delivery systems based on cells and cell membranes. J Med Signals Sens 9(3):181–189. https://doi.org/10.4103/jmss.JMSS_53_18

    Article  PubMed  PubMed Central  Google Scholar 

  128. Huang Y, Gao X, Chen J (2018) Leukocyte-derived biomimetic nanoparticulate drug delivery systems for cancer therapy. Acta Pharm Sin B 8(1):4–13. https://doi.org/10.1016/j.apsb.2017.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sun Y, Su J, Liu G, Chen J, Zhang X, Zhang R, Jiang M, Qiu M (2017) Advances of blood cell-based drug delivery systems. Eur J Pharm Sci 96:115–128. https://doi.org/10.1016/j.ejps.2016.07.021

    Article  CAS  PubMed  Google Scholar 

  130. Cao H, Dan Z, He X, Zhang Z, Yu H, Yin Q, Li Y (2016) Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano 10(8):7738–7748. https://doi.org/10.1021/acsnano.6b03148

    Article  CAS  PubMed  Google Scholar 

  131. Di D, Chen L, Wang L, Sun P, Liu Y, Xu Z, Ju J (2016) Downregulation of human intercellular adhesion molecule-1 attenuates the metastatic ability in human breast cancer cell lines. Oncol Rep 35(3):1541–1548. https://doi.org/10.3892/or.2016.4543

    Article  CAS  PubMed  Google Scholar 

  132. Kang T, Zhu Q, Wei D, Feng J, Yao J, Jiang T, Song Q, Wei X, Chen H, Gao X, Chen J (2017) Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 11(2):1397–1411. https://doi.org/10.1021/acsnano.6b06477

    Article  CAS  PubMed  Google Scholar 

  133. Gong C, Hu C, Gu F, Xia Q, Yao C, Zhang L, Qiang L, Gao S, Gao Y (2017) Co-delivery of autophagy inhibitor ATG7 siRNA and docetaxel for breast cancer treatment. J Control Release 266:272–286. https://doi.org/10.1016/j.jconrel.2017.09.042

    Article  CAS  PubMed  Google Scholar 

  134. Zhang Q, Dehaini D, Zhang Y, Zhou J, Chen X, Zhang L, Fang RH, Gao W, Zhang L (2018) Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol 13(12):1182–1190. https://doi.org/10.1038/s41565-018-0254-4

    Article  CAS  PubMed  Google Scholar 

  135. Wu D, Si M, Xue H-Y, Wong H-L (2017) Nanomedicine applications in the treatment of breast cancer: current state of the art. Int J Nanomed 12:5879–5892. https://doi.org/10.2147/IJN.S123437

    Article  CAS  Google Scholar 

  136. Zhang X, Wu W (2014) Ligand-mediated active targeting for enhanced oral absorption. Drug Discov Today 19(7):898–904. https://doi.org/10.1016/j.drudis.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  137. Saleh T, Soudi T, Shojaosadati SA (2019) Aptamer functionalized curcumin-loaded human serum albumin (HSA) nanoparticles for targeted delivery to HER-2 positive breast cancer cells. Int J Biol Macromol 130:109–116. https://doi.org/10.1016/j.ijbiomac.2019.02.129

    Article  CAS  PubMed  Google Scholar 

  138. Kallergi G, Agelaki S, Papadaki MA, Nasias D, Matikas A, Mavroudis D, Georgoulias V (2015) Expression of truncated human epidermal growth factor receptor 2 on circulating tumor cells of breast cancer patients. Breast Cancer Res 17(1):113–113. https://doi.org/10.1186/s13058-015-0624-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Houdaihed L, Evans JC, Allen C (2019) In vivo evaluation of dual-targeted nanoparticles encapsulating paclitaxel and everolimus. Cancers (Basel) 11(6):752. https://doi.org/10.3390/cancers11060752

    Article  CAS  Google Scholar 

  140. Miller-Kleinhenz JM, Bozeman EN, Yang L (2015) Targeted nanoparticles for image-guided treatment of triple-negative breast cancer: clinical significance and technological advances. WIREs Nanomed Nanobiotechnol 7(6):797–816. https://doi.org/10.1002/wnan.1343

    Article  CAS  Google Scholar 

  141. Cai Z, Chattopadhyay N, Yang K, Kwon YL, Yook S, Pignol J-P, Reilly RM (2016) 111In-labeled trastuzumab-modified gold nanoparticles are cytotoxic in vitro to HER2-positive breast cancer cells and arrest tumor growth in vivo in athymic mice after intratumoral injection. Nucl Med Biol 43(12):818–826. https://doi.org/10.1016/j.nucmedbio.2016.08.009

    Article  CAS  PubMed  Google Scholar 

  142. Chen C, Zhao S, Karnad A, Freeman JW (2018) The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol 11(1):64. https://doi.org/10.1186/s13045-018-0605-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Arpicco S, De Rosa G, Fattal E (2013) Lipid-based nanovectors for targeting of CD44-overexpressing tumor cells. J Drug Deliv 2013:860780–860780. https://doi.org/10.1155/2013/860780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Carton F, Chevalier Y, Nicoletti L, Tarnowska M, Stella B, Arpicco S, Malatesta M, Jordheim LP, Briançon S, Lollo G (2019) Rationally designed hyaluronic acid-based nano-complexes for pentamidine delivery. Int J Pharm 568:118526. https://doi.org/10.1016/j.ijpharm.2019.118526

    Article  CAS  PubMed  Google Scholar 

  145. Gupta B, Poudel BK, Ruttala HB, Regmi S, Pathak S, Gautam M, Jin SG, Jeong J-H, Choi H-G, Ku SK, Yong CS, Kim JO (2018) Hyaluronic acid-capped compact silica-supported mesoporous titania nanoparticles for ligand-directed delivery of doxorubicin. Acta Biomater 80:364–377. https://doi.org/10.1016/j.actbio.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  146. Nguyen VD, Min H-K, Kim C-S, Han J, Park J-O, Choi E (2019) Folate receptor-targeted liposomal nanocomplex for effective synergistic photothermal-chemotherapy of breast cancer in vivo. Colloids Surf B 173:539–548. https://doi.org/10.1016/j.colsurfb.2018.10.013

    Article  CAS  Google Scholar 

  147. Bhanumathi R, Manivannan M, Thangaraj R, Kannan S (2018) Drug-carrying capacity and anticancer effect of the folic acid- and berberine-loaded silver nanomaterial to regulate the AKT-ERK pathway in breast cancer. ACS Omega 3(7):8317–8328. https://doi.org/10.1021/acsomega.7b01347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J, Yong E-L, Xu HE, Melcher K (2013) Structural basis for molecular recognition of folic acid by folate receptors. Nature 500(7463):486–489. https://doi.org/10.1038/nature12327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Nieberler M, Reuning U, Reichart F, Notni J, Wester H-J, Schwaiger M, Weinmüller M, Räder A, Steiger K, Kessler H (2017) Exploring the role of RGD-recognizing integrins in cancer. Cancers (Basel) 9(9):116. https://doi.org/10.3390/cancers9090116

    Article  CAS  Google Scholar 

  150. Zhang J, Zhang P, Zou Q, Li X, Fu J, Luo Y, Liang X, Jin Y (2018) Co-delivery of gemcitabine and paclitaxel in cRGD-modified long circulating nanoparticles with asymmetric lipid layers for breast cancer treatment. Molecules 23(11):2906. https://doi.org/10.3390/molecules23112906

    Article  CAS  PubMed Central  Google Scholar 

  151. He X, Alves CS, Oliveira N, Rodrigues J, Zhu J, Bányai I, Tomás H, Shi X (2015) RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells. Colloids Surf B 125:82–89. https://doi.org/10.1016/j.colsurfb.2014.11.004

    Article  CAS  Google Scholar 

  152. Xu J, Liu Y, Li Y, Wang H, Stewart S, Van der Jeught K, Agarwal P, Zhang Y, Liu S, Zhao G, Wan J, Lu X, He X (2019) Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer. Nat Nanotechnol 14(4):388–397. https://doi.org/10.1038/s41565-019-0381-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pawar A, Prabhu P (2019) Nanosoldiers: a promising strategy to combat triple negative breast cancer. Biomed Pharmacother 110:319–341. https://doi.org/10.1016/j.biopha.2018.11.122

    Article  CAS  PubMed  Google Scholar 

  154. Yao H, He G, Yan S, Chen C, Song L, Rosol TJ, Deng X (2017) Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget 8(1):1913–1924. https://doi.org/10.18632/oncotarget.12284

    Article  PubMed  Google Scholar 

  155. Colombo M, Rizzuto MA, Pandolfi L, Pacini C, Bonizzi A, Truffi M, Monieri M, Catrambone F, Giustra M, Garbujo S, Fiandra L, Corsi F, Prosperi D, Mazzucchelli S (2018) Half-Chain cetuximab nanoconjugates allow multitarget therapy of triple negative breast cancer. Bioconjug Chem. https://doi.org/10.1021/acs.bioconjchem.8b00667

    Article  PubMed  Google Scholar 

  156. Hossein-Nejad-Ariani H, Althagafi E, Kaur K (2019) Small peptide ligands for targeting EGFR in triple negative breast cancer cells. Sci Rep 9(1):2723–2723. https://doi.org/10.1038/s41598-019-38574-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Deshmukh SK, Srivastava SK, Poosarla T, Dyess DL, Holliday NP, Singh AP, Singh S (2019) Inflammation, immunosuppressive microenvironment and breast cancer: opportunities for cancer prevention and therapy. Ann Transl Med 7(20):593–593. https://doi.org/10.21037/atm.2019.09.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review was financially supported by the Projects of International Cooperation and Exchanges of National Natural Science Foundation of China (82020108033); the Natural Science Foundation of Guangdong (2019A1515011286); the Open Project funded by Key laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing(2019 Open Project-05); the National Natural Science Foundation of China (81973839).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiange Cai or Yu Cai.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, M., Lu, W., Zou, T. et al. Role of inflammatory microenvironment: potential implications for improved breast cancer nano-targeted therapy. Cell. Mol. Life Sci. 78, 2105–2129 (2021). https://doi.org/10.1007/s00018-020-03696-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03696-4

Keywords

Navigation