Skip to main content

Advertisement

Log in

The Role of the Mediators of Inflammation in Cancer Development

  • Review
  • Published:
Pathology & Oncology Research

Abstract

Epigenetic disorders such as point mutations in cellular tumor suppressor genes, DNA methylation and post-translational modifications are needed to transformation of normal cells into cancer cells. These events result in alterations in critical pathways responsible for maintaining the normal cellular homeostasis, triggering to an inflammatory response which can lead the development of cancer. The inflammatory response is a universal defense mechanism activated in response to an injury tissue, of any nature, that involves both innate and adaptive immune responses, through the collective action of a variety of soluble mediators. Many inflammatory signaling pathways are activated in several types of cancer, linking chronic inflammation to tumorigenesis process. Thus, Inflammatory responses play decisive roles at different stages of tumor development, including initiation, promotion, growth, invasion, and metastasis, affecting also the immune surveillance. Immune cells that infiltrate tumors engage in an extensive and dynamic crosstalk with cancer cells, and some of the molecular events that mediate this dialog have been revealed. A range of inflammation mediators, including cytokines, chemokines, free radicals, prostaglandins, growth and transcription factors, microRNAs, and enzymes as, cyclooxygenase and matrix metalloproteinase, collectively acts to create a favorable microenvironment for the development of tumors. In this review are presented the main mediators of the inflammatory response and discussed the likely mechanisms through which, they interact with each other to create a condition favorable to development of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

AP-1:

Activator protein 1

APC:

Antigen-presenting cell

cAMP:

Cyclic AMP

CCL:

Chemokine (C-C motif) ligand

CD:

Cluster of differentiation

cHL:

Classical Hodgkin lymphoma

CLRs:

C-type lectin receptors

COX:

Cyclooxygenase

CRC:

Colorectal cancer

CXC:

Chemokine receptors

DAMPs:

Damage-associated molecular patterns

DNA:

Deoxyribonucleic acid

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-mesenchymal transition

FOXP3:

Forkhead box P3

GPCRs:

G protein-coupled

HPV:

Human papillomavirus

ICC:

Invasive cervical cancer

IFN:

Interferon

IL:

Interleukin

MHC:

Major histocompatibility complex

miRNAs:

MicroRNAs

MM:

Multiple myeloma

MMPs:

Enzymes matrix metalloproteinase matrix

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NK:

Natural killer cell

NLRs:

NOD-like receptors

NO:

Nitric oxide

NSAIDs:

Non-steroidal anti-inflammatory drugs

p53:

Tumor protein p53

PAMPs:

Pathogen-associated molecular patterns

PGs:

Prostaglandins

PRRs:

Pattern recognition receptors

PTGER:

Prostaglandin receptor

PTGES:

Terminal prostaglandin synthase enzyme

PubMed:

US National Library of Medicine

RLRs:

RIG-like receptors

ROS:

Reactive oxygen species

STAT:

Signal transducers and activators of transcription

TCR:

T Cell Receptor

TGF:

Transforming growth factor

Th cells:

T helper cells

TLRs:

Toll-like receptors

TNF:

Tumor necrosis factor

Tregs:

Regulatory T cells

Txs:

Thromboxanes

References

  1. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265

    Article  CAS  PubMed  Google Scholar 

  2. Ashley NT, Weil ZM, Nelson RJ (2012) Inflammation: mechanisms, costs, and natural variation. Annu Rev Ecol Evol Syst 43:385–406

    Article  Google Scholar 

  3. Bermejo-Martin JF, Martín-Loeches I, Bosinger S (2014) Inflammation and infection in critical care medicine. Mediat Inflamm 2014:456256. doi:10.1155/2014/456256

    Google Scholar 

  4. Eiró N, Vizoso FJ (2012) Inflammation and cancer. World J Gastrointest Surg 4(3):62–72

    Article  PubMed Central  PubMed  Google Scholar 

  5. Campbell LM, Maxwell PJ, Waugh DJ (2013) Rationale and means to target pro-inflammatory interleukin-8 (CXCL8) signaling in cancer. Pharmaceuticals 6(8):929–959

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kaushal N, Kudva AK (2013) Oxidative stress and inflammation: the lesser of two evils in carcinogenesis. PostDoc J 1(2):89–101

    Google Scholar 

  7. Parks WC, Wilson CL, López-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4(8):617–629

    Article  CAS  PubMed  Google Scholar 

  8. Hussain SP, Harris CC (2007) Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 121(11):2373–2380

    Article  CAS  PubMed  Google Scholar 

  9. Adefuye A, Sales K (2012) Regulation of inflammatory pathways in cancer and infectious disease of the cervix. Scientifica (Cairo) 2012:548150

    Google Scholar 

  10. Allavena P, Germano G, Marchesi F, Mantovani A (2011) Chemokines in cancer related inflammation. Exp Cell Res 317(5):664–673

    Article  CAS  PubMed  Google Scholar 

  11. Raman D, Baugher PJ, Thu YM, Richmond A (2007) Role of chemokines in tumor growth. Cancer Lett 256(2):137–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12:86. doi:10.1186/1476-4598-12-86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Liang Y, Zhou Y, Shen P (2004) NF-kappaB and its regulation on the immune system. Cell Mol Immunol 1(5):343–350

    CAS  PubMed  Google Scholar 

  14. Wu LJ, Li HX, Luo XT et al (2014) STAT3 activation in tumor cell-free lymph nodes predicts a poor prognosis for gastric cancer. Int J Clin Exp Pathol 7(3):1140–1146

    PubMed Central  PubMed  Google Scholar 

  15. Fan Y, Mao R, Yang J (2013) NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 4(3):176–185

    Article  CAS  PubMed  Google Scholar 

  16. Gomis-Rüth FX (2009) Catalytic domain architecture of metzincin metalloproteases. J Biol Chem 284(23):15353–15357

    Article  PubMed Central  PubMed  Google Scholar 

  17. Löffek S, Schilling O, Franzke CW (2011) Biological role of matrix metalloproteinases: a critical balance. Eur Respir J 38:191–208

    Article  PubMed  Google Scholar 

  18. Walter L, Harper C, Gar P (2013) Role of matrix metalloproteinases in inflammation/colitis-associated colon cancer. Immuno-Gastroenterology 2(1):22–28

    Article  Google Scholar 

  19. Chen Q, Jin M, Yang F, Zhu J, Xiao Q, Zhang L (2013) Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediat Inflamm 2013:928315. doi:10.1155/2013/928315

    Google Scholar 

  20. Butler GS (2000) Overall CM (2013) Matrix metalloproteinase processing of signaling molecules to regulate inflammation. Periodontol 63(1):123–148

    Article  Google Scholar 

  21. Said AH, Raufman JP, Xie G (2014) The role of matrix metalloproteinases in colorectal cancer. Cancers 6(1):366–375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zyada MM, Shamaa AA (2008) Is collagenase-3 (MMP-13) expression in chondrosarcoma of the jaws a true marker for tumor aggressiveness? Diagn Pathol 3:26. doi:10.1186/1746-1596-3-26

    Article  PubMed Central  PubMed  Google Scholar 

  23. Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM (2004) Cyclooxygenases in cancer: progress and perspective. Cancer Lett 215(1):1–20

    Article  CAS  PubMed  Google Scholar 

  24. Cathcart MC, O’Byrne KJ, Reynolds JV, O’Sullivan J, Pidgeon GP (2012) COX-derived prostanoid pathways in gastrointestinal cancer development and progression: novel targets for prevention and intervention. Biochim Biophys Acta 1825(1):49–63

    CAS  PubMed  Google Scholar 

  25. Asting AG, Carén H, Andersson M, Lönnroth C, Lagerstedt K, Lundholm K (2011) COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status. BMC Cancer 11:238. doi:10.1186/1471-2407-11-238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wang D, Dubois RN (2010) The Role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29(6):781–788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Sharkey DJ, Tremellen KP, Jasper MJ, Gemzell-Danielsson K, Robertson SA (2012) Seminal fluid induces leukocyte recruitment and cytokine and chemokine mRNA expression in the human cervix after coitus. J Immunol 188(5):2445–2454

    Article  CAS  PubMed  Google Scholar 

  28. Sales KJ, Katz AA, Howard B et al (2002) Cyclooxygenase-1 is up-regulated in cervical carcinomas: autocrine/paracrine regulation of cyclooxygenase-2, prostaglandin e receptors, and angiogenic factors by cyclooxygenase-1. Cancer Res 62:424–432

    PubMed Central  CAS  PubMed  Google Scholar 

  29. zur Hausen H (2009) Papillomaviruses in the causation of human cancers - a brief historical account. Virology 384(2):260–265

    Article  PubMed  Google Scholar 

  30. Ahmad J, Hasnain SE, Siddiqui MA, Ahamed M, Musarrat J, Al-Khedhairy AA (2013) MicroRNA in carcinogenesis & cancer diagnostics: a new paradigm. Indian J Med Res 137(4):680–694

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ostermann E, Laventie JR, Pfeffer S, Bahram S, Sprauel PS, Georgel P (2013) MicroRNAs: Fine-turners of type-I interferon-dependent inflammatory responses. Curr Trends Immunol 14:35–44

    CAS  Google Scholar 

  33. Tili E, Michaille JJ, Croce CM (2013) MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol Rev 253(1):167–184

    Article  PubMed  Google Scholar 

  34. Shivdasani RA (2006) MicroRNAs: regulators of gene expression and cell differentiation. Blood 108(12):3646–3653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Yeung ML, Jeang KT (2011) MicroRNAs and cancer therapeutics. Pharm Res 28(12):3043–3049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. O’Connell RM, Rao DS, Baltimore D (2012) MicroRNA regulation of inflammatory responses. Annu Rev Immunol 30:295–312

    Article  PubMed  Google Scholar 

  37. Chiba T, Marusawa H, Ushijima T (2012) Inflammation-associated cancer development in digestive organs: mechanisms and roles for genetic and epigenetic modulation. Gastroenterology 143(3):550–563

    Article  CAS  PubMed  Google Scholar 

  38. Schetter AJ, Okayama H, Harris CC (2012) The role of microRNAs in colorectal cancer. Cancer J 18:244–252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Tang T, Wong HK, Gu W et al (2013) MicroRNA-182 plays an onco-miRNA role in cervical cancer. Gynecol Oncol 129(1):199–208

    Article  CAS  PubMed  Google Scholar 

  40. Zhou Q, Haupt S, Kreuzer JT et al (2014) Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis. Ann Rheum Dis. doi:10.1136/annrheumdis-2013-204377

    Google Scholar 

  41. Iliopoulos D (2014) MicroRNA circuits regulate the cancer-inflammation link. Sci Signal 7(318):pe8. doi:10.1126/scisignal.2005053

    Article  PubMed  Google Scholar 

  42. Josse C, Bouznad N, Geurts P et al (2014) Identification of a microRNA landscape targeting the PI3K/Akt signaling pathway in inflammation-induced colorectal carcinogenesis. Am J Physiol Gastrointest Liver Physiol 306(3):G229–G243

    Article  CAS  PubMed  Google Scholar 

  43. Schauer IG, Zhang J, Xing Z, Guo X, Mercado-Uribe I, Sood AK, Huang P, Liu J (2013) Interleukin-1β promotes ovarian tumorigenesis through a p53/NF-κB-mediated inflammatory response in stromal fibroblasts. Neoplasia 15(4):409–420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Lou JL, Maeda S, Hsu LC, Yagita H, Karin M (2004) Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNF-α to TRAIL-mediated tumor regression. Cancer Cell 6(3):297–305

    Article  Google Scholar 

  45. Waters JP, Pober JS, Bradley JR (2013) Tumour necrosis factor and cancer. J Pathol 230(3):241–248

    Article  CAS  PubMed  Google Scholar 

  46. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3(4):276–285

    Article  CAS  PubMed  Google Scholar 

  47. Lebrun JJ (2012) The dual role of TGF-β in human cancer: from tumor suppression to cancer metastasis. ISRN Mol Biol 2012:381428. doi:10.5402/2012/ 381428

    Article  Google Scholar 

  48. Elliott RL, Blobe GC (2005) Role of transforming growth factor beta in human cancer. J Clin Oncol 23(9):2078–2093

    Article  CAS  PubMed  Google Scholar 

  49. Chen W, Konkel JE (2010) TGF-beta and ‘adaptive’ Foxp3(+) regulatory T cells. J Mol Cell Biol 2(1):30–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Visperas A, Do JS, Bulek K, Li X, Min B (2014) IL-27, targeting antigen-presenting cells, promotes Th17 differentiation and colitis in mice. Mucosal Immunol 7(3):625–633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Guo Y, Xu F, Lu T, Duan Z, Zhang Z (2012) Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 38(7):904–910

    Article  CAS  PubMed  Google Scholar 

  52. Vicari AP, Trinchieri G (2004) Interleukin-10 in viral diseases and cancer: exiting the labyrinth? Immunol Rev 202:223–236

    Article  CAS  PubMed  Google Scholar 

  53. Mocelin S, Marincola FM, Young HA (2005) Interleukin-10 and the immune response against cancer: a counterpoint. J Leukoc Biol 78:1043–1051

    Article  Google Scholar 

  54. Driessler F, Venstrom K, Sabat R, Asadullah K, Schottelius AJ (2004) Molecular mechanisms of interleukin-10-mediated inhibition of NF-kappaB activity: a role for p50. Clin Exp Immunol 135(1):64–73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Pattison MJ, MacKenzie KF, Arthur JS (2012) Inhibition of JAKs in macrophages increases lipopolysaccharide-induced cytokine production by blocking IL-10-mediated feedback. J Immunol 189(6):2784–2792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Sato T, Terai M, Tamura Y, Alexeev V, Mastrangelo MJ, Selvan SR (2011) Interleukin 10 in the tumor microenvironment: a target for anticancer immunotherapy. Immunol Res 51(2–3):170–82

    Article  CAS  PubMed  Google Scholar 

  57. Cope A, Le Friec G, Cardone J, Kemper C (2011) The Th1 life cycle: molecular control of IFN-γ to IL-10 switching. Trends Immunol 32(6):278–286

    Article  CAS  PubMed  Google Scholar 

  58. Stewart CA, Metheny H, Iida N et al (2013) Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation. J Clin Invest 123(11):4859–4874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Shigehara K, Shijubo N, Ohmichi M et al (2001) IL-12 and IL-18 are increased and stimulate IFN-γ production in sarcoid lungs. J Immunol 166(1):642–649

    Article  CAS  PubMed  Google Scholar 

  60. Wong JL, Berk E, Edwards RP, Kalinski P (2013) IL-18-primed helper NK cells collaborate with dendritic cells to promote recruitment of effector CD8+ T cells to the tumor microenvironment. Cancer Res 73(15):4653–4662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Srivastava S, Salim N, Robertson MJ (2010) Interleukin-18: biology and role in the immunotherapy of cancer. Curr Med Chem 17(29):3353–3357

    Article  CAS  PubMed  Google Scholar 

  62. Palma G, Barbieri A, Bimonte S, Palla M, Zappavigna S, Caraglia M, Ascierto PA, Ciliberto G, Arra C (2013) Interleukin 18: friend or foe in cancer. Biochim Biophys Acta 1836:296–303

    CAS  PubMed  Google Scholar 

  63. Miossec P (2009) IL-17 and Th17 cells in human inflammatory diseases. Microbes Infect 11(5):625–630

    Article  CAS  PubMed  Google Scholar 

  64. Xiang T, Long H, He L, Han X, Lin K, Liang Z, Zhuo W, Xie R, Zhu B (2013) Interleukin-17 produced by tumor microenvironment promotes self-renewal of CD133+ cancer stem-like cells in ovarian cancer. Oncogene. doi:10.1038/onc.2013.537

    Google Scholar 

  65. Chen WC, Lai YH, Chen HY, Guo HR, Su IJ, Chen HH (2013) Interleukin-17-producing cell infiltration in the breast cancer tumour microenvironment is a poor prognostic factor. Histopathology 63(2):225–233

    Article  PubMed  Google Scholar 

  66. Chen Z, Ding J, Pang N, Du R, Meng W, Zhu Y, Zhang Y, Ma C, Ding Y (2013) The Th17/Treg balance and the expression of related cytokines in Uygur cervical cancer patients. Diagn Pathol 8:61. doi:10.1186/1746-1596-8-61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Ngiow SF, Teng MW, Smyth MJ (2013) Balance of interleukin-12 and −23 in cancer. Trends Immunol 34(11):548–555

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

All authors state that there are no conflicts of interest to be declared. No financial support was requested or received in the production of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Veríssimo Fernandes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, J.V., Cobucci, R.N.O., Jatobá, C.A.N. et al. The Role of the Mediators of Inflammation in Cancer Development. Pathol. Oncol. Res. 21, 527–534 (2015). https://doi.org/10.1007/s12253-015-9913-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-015-9913-z

Keywords

Navigation