Skip to main content

Advertisement

Log in

Pluripotent stem cell-based gene therapy approach: human de novo synthesized chromosomes

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

A novel approach in gene therapy was introduced 20 years ago since artificial non-integrative chromosome-based vectors containing gene loci size inserts were engineered. To date, different human artificial chromosomes (HAC) were generated with the use of de novo construction or “top-down” engineering approaches. The HAC-based therapeutic approach includes ex vivo gene transferring and correction of pluripotent stem cells (PSCs) or highly proliferative modified stem cells. The current progress in the technology of induced PSCs, integrating with the HAC technology, resulted in a novel platform of stem cell-based tissue replacement therapy for the treatment of genetic disease. Nowadays, the sophisticated and laborious HAC technology has significantly improved and is now closer to clinical studies. In here, we reviewed the achievements in the technology of de novo synthesized HACs for a chromosome transfer for developing gene therapy tissue replacement models of monogenic human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4 

Similar content being viewed by others

Abbreviations

BACs:

Bacterial artificial chromosomes

CENP-B:

Centromere protein B

cGMP:

Current good manufacturing practice

GFP:

Green fluorescent protein

CHO:

Chinese hamster ovary

ESCs:

Embryonic stem cells

IIS:

Iterative integration system

iMCT:

Isolated metaphase chromosome transfection

iPSCs:

Induced pluripotent stem cells

FVIII:

Human clotting factor VIII

HAC:

Human artificial chromosome

hESCs:

Human embryonic stem cells

hiPSCs:

Human induced pluripotent stem cells

HPRT:

Hypoxanthine–guanine phosphoribosyl transferase

HSV-1:

Herpes simplex virus 1

HSPCs:

Hematopoietic stem and progenitor cells

HVJ-E:

Hemagglutinating virus of Japan E

lacO:

Lac operon

loxP:

Locus of X-over P1

MLV:

Murine leukemia retrovirus

MMCT:

Microcell mediated chromosome transfer

MSCs:

Mesenchymal stem cells

MV:

Measles virus

PEG:

Polyethylene glycol

PSCs:

Pluripotent stem cells

rAAVs:

Adeno-associated recombinant viruses

RMCE:

Recombinase-mediated cassette exchange method

TAR:

Transformation associated recombination

tetO:

Tetracycline operator

tetR:

Tet-repressor protein

SIM:

Sequential integration of multiple vectors

YACs:

Yeast artificial chromosomes

References

  1. O'Connor TP, Crystal RG (2006) Genetic medicines: treatment strategies for hereditary disorders. Nat Rev Genet 7(4):261–276. https://doi.org/10.1038/nrg1829

    Article  CAS  PubMed  Google Scholar 

  2. Hotta A, Yamanaka S (2015) From genomics to gene therapy: induced pluripotent stem cells meet genome editing. Annu Rev Genet 49:47–70. https://doi.org/10.1146/annurev-genet-112414-054926

    Article  CAS  PubMed  Google Scholar 

  3. Stieger K, Cronin T, Bennett J, Rolling F (2011) Adeno-associated virus mediated gene therapy for retinal degenerative diseases. Methods Mol Biol 807:179–218. https://doi.org/10.1007/978-1-61779-370-7_8

    Article  CAS  PubMed  Google Scholar 

  4. Wu C, Dunbar CE (2011) Stem cell gene therapy: the risks of insertional mutagenesis and approaches to minimize genotoxicity. Front Med 5(4):356–371. https://doi.org/10.1007/s11684-011-0159-1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Biffi A, Aubourg P, Cartier N (2011) Gene therapy for leukodystrophies. Hum Mol Genet 20(R1):R42–53. https://doi.org/10.1093/hmg/ddr142

    Article  CAS  PubMed  Google Scholar 

  6. Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 15(4):345–355. https://doi.org/10.1038/ng0497-345

    Article  CAS  PubMed  Google Scholar 

  7. Ikeno M, Grimes B, Okazaki T, Nakano M, Saitoh K, Hoshino H, McGill NI, Cooke H, Masumoto H (1998) Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 16(5):431–439. https://doi.org/10.1038/nbt0598-431

    Article  CAS  PubMed  Google Scholar 

  8. Kazuki Y, Oshimura M (2011) Human artificial chromosomes for gene delivery and the development of animal models. Mol Ther 19(9):1591–1601. https://doi.org/10.1038/mt.2011.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kouprina N, Tomilin AN, Masumoto H, Earnshaw WC, Larionov V (2014) Human artificial chromosome-based gene delivery vectors for biomedicine and biotechnology. Expert Opin Drug Deliv 11(4):517–535. https://doi.org/10.1517/17425247.2014.882314

    Article  CAS  PubMed  Google Scholar 

  10. Oshimura M, Katoh M (2008) Transfer of human artificial chromosome vectors into stem cells. Reprod Biomed Online 16(1):57–69

    Article  Google Scholar 

  11. Kakeda M, Hiratsuka M, Nagata K, Kuroiwa Y, Kakitani M, Katoh M, Oshimura M, Tomizuka K (2005) Human artificial chromosome (HAC) vector provides long-term therapeutic transgene expression in normal human primary fibroblasts. Gene Ther 12(10):852–856. https://doi.org/10.1038/sj.gt.3302483

    Article  CAS  PubMed  Google Scholar 

  12. Ikeno M, Suzuki N (2011) Construction and use of a bottom-up HAC vector for transgene expression. Methods Mol Biol 738:101–110. https://doi.org/10.1007/978-1-61779-099-7_7

    Article  CAS  PubMed  Google Scholar 

  13. Tedesco FS (2015) Human artificial chromosomes for Duchenne muscular dystrophy and beyond: challenges and hopes. Chromosome Res 23(1):135–141. https://doi.org/10.1007/s10577-014-9460-6

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki T, Kazuki Y, Hara T, Oshimura M (2020) Current advances in microcell-mediated chromosome transfer technology and its applications. Exp Cell Res 390(1):111915. https://doi.org/10.1016/j.yexcr.2020.111915

    Article  CAS  PubMed  Google Scholar 

  15. Sinenko SA, Ponomartsev SV, Tomilin AN (2020) Human artificial chromosomes for pluripotent stem cell-based tissue replacement therapy. Exp Cell Res 389(1):111882. https://doi.org/10.1016/j.yexcr.2020.111882

    Article  CAS  PubMed  Google Scholar 

  16. Brown DM, Glass JI (2020) Technology used to build and transfer mammalian chromosomes. Exp Cell Res 388(2):111851. https://doi.org/10.1016/j.yexcr.2020.111851

    Article  CAS  PubMed  Google Scholar 

  17. Ikeno M, Hasegawa Y (2020) Applications of bottom-up human artificial chromosomes in cell research and cell engineering. Exp Cell Res 390(1):111793. https://doi.org/10.1016/j.yexcr.2019.111793

    Article  CAS  PubMed  Google Scholar 

  18. Kouprina N, Larionov V (2016) Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology. Chromosoma 125(4):621–632. https://doi.org/10.1007/s00412-016-0588-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kouprina N, Earnshaw WC, Masumoto H, Larionov V (2013) A new generation of human artificial chromosomes for functional genomics and gene therapy. Cel Mol life Sci 70(7):1135–1148. https://doi.org/10.1007/s00018-012-1113-3

    Article  CAS  Google Scholar 

  20. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Sci 282(5391):1145–1147. https://doi.org/10.1126/science.282.5391.1145

    Article  CAS  Google Scholar 

  21. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  Google Scholar 

  22. Doss MX, Sachinidis A (2019) Current challenges of iPSC-based disease modeling and therapeutic implications. Cells 8(5):403. https://doi.org/10.3390/cells8050403

    Article  CAS  PubMed Central  Google Scholar 

  23. Attwood SW, Edel MJ (2019) iPS-cell technology and the problem of genetic instability-can it ever be safe for clinical use? J Clin Med 8(3):288. https://doi.org/10.3390/jcm8030288

    Article  CAS  PubMed Central  Google Scholar 

  24. Fields M, Cai H, Gong J, Del Priore L (2016) Potential of induced pluripotent stem cells (iPSCs) for treating age-related macular degeneration (AMD). Cells 5(4):1–15. https://doi.org/10.3390/cells5040044

    Article  CAS  Google Scholar 

  25. Perie S, Trollet C, Mouly V, Vanneaux V, Mamchaoui K, Bouazza B, Marolleau JP, Laforet P, Chapon F, Eymard B, Butler-Browne G, Larghero J, St Guily JL (2014) Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a phase i/iia clinical study. Mol Ther 22(1):219–225. https://doi.org/10.1038/mt.2013.155

    Article  CAS  PubMed  Google Scholar 

  26. Souied E, Pulido J, Staurenghi G (2017) Autologous induced stem-cell-derived retinal cells for macular degeneration. N Eng J Med 377(8):792. https://doi.org/10.1056/NEJMc1706274

    Article  Google Scholar 

  27. He R, Li H, Wang L, Li Y, Zhang Y, Chen M, Zhu Y, Zhang C (2020) Engraftment of human induced pluripotent stem cell-derived myogenic progenitors restores dystrophin in mice with Duchenne muscular dystrophy. Biol Res 53(1):22. https://doi.org/10.1186/s40659-020-00288-1

    Article  PubMed  PubMed Central  Google Scholar 

  28. Garbern JC, Escalante GO, Lee RT (2020) Pluripotent stem cell-derived cardiomyocytes for treatment of cardiomyopathic damage: current concepts and future directions. Trends Cardiovasc Med. https://doi.org/10.1016/j.tcm.2020.01.002

    Article  PubMed  Google Scholar 

  29. Cyranoski D (2018) ‘Reprogrammed’ stem cells approved to mend human hearts for the first time. Nature 557(7707):619–620. https://doi.org/10.1038/d41586-018-05278-8

    Article  CAS  PubMed  Google Scholar 

  30. Hockemeyer D, Jaenisch R (2016) Induced pluripotent stem cells meet genome editing. Cell Stem Cell 18(5):573–586. https://doi.org/10.1016/j.stem.2016.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choi IY, Lim H, Estrellas K, Mula J, Cohen TV, Zhang YF, Donnelly CJ, Richard JP, Kim YJ, Kim H, Kazuki Y, Oshimura M, Li HL, Hotta A, Rothstein J, Maragakis N, Wagner KR, Lee G (2016) Concordant but varied phenotypes among Duchenne muscular dystrophy patient-specific myoblasts derived using a human iPSC-based model. Cell Rep 15(10):2301–2312. https://doi.org/10.1016/j.celrep.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  32. Perepelina K, Kostina A, Klauzen P, Khudiakov A, Rabino M, Crasto S, Zlotina A, Fomicheva Y, Sergushichev A, Oganesian M, Dmitriev A, Kostareva A, Di Pasquale E, Malashicheva A (2020) Generation of two iPSC lines (FAMRCi007-A and FAMRCi007-B) from patient with Emery-Dreifuss muscular dystrophy and heart rhythm abnormalities carrying genetic variant LMNA p.Arg249Gln. Stem Cell Res 47:101895. https://doi.org/10.1016/j.scr.2020.101895

    Article  CAS  PubMed  Google Scholar 

  33. Sung JJ, Park CY, Leem JW, Cho MS, Kim DW (2019) Restoration of FVIII expression by targeted gene insertion in the FVIII locus in hemophilia A patient-derived iPSCs. Exp Mol Med 51(4):1–9. https://doi.org/10.1038/s12276-019-0243-1

    Article  CAS  PubMed  Google Scholar 

  34. Ortiz-Vitali JL, Darabi R (2019) iPSCs as a platform for disease modeling, drug screening, and personalized therapy in muscular dystrophies. Cells 8(1):1–14. https://doi.org/10.3390/cells8010020

    Article  CAS  Google Scholar 

  35. Piga D, Salani S, Magri F, Brusa R, Mauri E, Comi GP, Bresolin N, Corti S (2019) Human induced pluripotent stem cell models for the study and treatment of Duchenne and Becker muscular dystrophies. Ther Adv Neurol Disord 12:1756286419833478. https://doi.org/10.1177/1756286419833478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee S, Huh JY, Turner DM, Lee S, Robinson J, Stein JE, Shim SH, Hong CP, Kang MS, Nakagawa M, Kaneko S, Nakanishi M, Rao MS, Kurtz A, Stacey GN, Marsh SGE, Turner ML, Song J (2018) Repurposing the cord blood bank for Haplobanking of HLA-homozygous iPSCs and their usefulness to multiple populations. Stem Cells 36(10):1552–1566. https://doi.org/10.1002/stem.2865

    Article  CAS  PubMed  Google Scholar 

  37. Turner M, Leslie S, Martin NG, Peschanski M, Rao M, Taylor CJ, Trounson A, Turner D, Yamanaka S, Wilmut I (2013) Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell 13(4):382–384. https://doi.org/10.1016/j.stem.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  38. Deuse T, Hu X, Gravina A, Wang D, Tediashvili G, De C, Thayer WO, Wahl A, Garcia JV, Reichenspurner H, Davis MM, Lanier LL, Schrepfer S (2019) Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol 37(3):252–258. https://doi.org/10.1038/s41587-019-0016-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Han X, Wang M, Duan S, Franco PJ, Kenty JH, Hedrick P, Xia Y, Allen A, Ferreira LMR, Strominger JL, Melton DA, Meissner TB, Cowan CA (2019) Generation of hypoimmunogenic human pluripotent stem cells. Proc Natl Acad Sci USA 116(21):10441–10446. https://doi.org/10.1073/pnas.1902566116

    Article  CAS  PubMed  Google Scholar 

  40. Tajer P, Pike-Overzet K, Arias S, Havenga M, Staal FJT (2019) Ex vivo expansion of hematopoietic stem cells for therapeutic purposes: lessons from development and the Niche. Cells 8(2):169. https://doi.org/10.3390/cells8020169

    Article  CAS  PubMed Central  Google Scholar 

  41. Widholz B, Tsitlakidis S, Reible B, Moghaddam A, Westhauser F (2019) Pooling of patient-derived mesenchymal stromal cells reduces inter-individual confounder-associated variation without negative impact on cell viability, proliferation and osteogenic differentiation. Cells 8(6):633. https://doi.org/10.3390/cells8060633

    Article  CAS  PubMed Central  Google Scholar 

  42. Ayoub S, Berberi A, Fayyad-Kazan M (2020) An update on human periapical cyst-mesenchymal stem cells and their potential applications in regenerative medicine. Mol Biol Rep 47(3):2381–2389. https://doi.org/10.1007/s11033-020-05298-6

    Article  CAS  PubMed  Google Scholar 

  43. Blau HM, Daley GQ (2019) Stem cells in the treatment of disease. N Eng J Med 380(18):1748–1760. https://doi.org/10.1056/NEJMra1716145

    Article  CAS  Google Scholar 

  44. Zhao C, Ikeya M (2018) Generation and applications of induced pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Int 2018:9601623. https://doi.org/10.1155/2018/9601623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang D, Zhang G, Gu J, Shao X, Dai Y, Li J, Pan X, Yao S, Xu A, Jin Y, Huang J, Shi Q, Zhu J, Xi X, Chen Z, Chen S (2020) In vivo generated hematopoietic stem cells from genome edited induced pluripotent stem cells are functional in platelet-targeted gene therapy of murine hemophilia A. Haematologica 105(4):e175–e179. https://doi.org/10.3324/haematol.2019.219089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sugimura R, Jha DK, Han A, Soria-Valles C, da Rocha EL, Lu YF, Goettel JA, Serrao E, Rowe RG, Malleshaiah M, Wong I, Sousa P, Zhu TN, Ditadi A, Keller G, Engelman AN, Snapper SB, Doulatov S, Daley GQ (2017) Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nat 545(7655):432–438. https://doi.org/10.1038/nature22370

    Article  CAS  Google Scholar 

  47. Haake K, Ackermann M, Lachmann N (2019) Concise review: towards the clinical translation of induced pluripotent stem cell-derived blood cells-ready for take-off. Stem Cells Transl Med 8(4):332–339. https://doi.org/10.1002/sctm.18-0134

    Article  PubMed  Google Scholar 

  48. Wang LT, Jiang SS, Ting CH, Hsu PJ, Chang CC, Sytwu HK, Liu KJ, Yen BL (2018) Differentiation of mesenchymal stem cells from human induced pluripotent stem cells results in downregulation of c-Myc and DNA replication pathways with immunomodulation toward CD4 and CD8 cells. Stem Cells 36(6):903–914. https://doi.org/10.1002/stem.2795

    Article  CAS  PubMed  Google Scholar 

  49. Sheyn D, Ben-David S, Shapiro G, De Mel S, Bez M, Ornelas L, Sahabian A, Sareen D, Da X, Pelled G, Tawackoli W, Liu Z, Gazit D, Gazit Z (2016) Human induced pluripotent stem cells differentiate into functional mesenchymal stem cells and repair bone defects. Stem Cells Transl Med 5(11):1447–1460. https://doi.org/10.5966/sctm.2015-0311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu M, Shaw G, Murphy M, Barry F (2019) Induced pluripotent stem cell-derived mesenchymal stromal cells are functionally and genetically different from bone marrow-derived mesenchymal stromal cells. Stem Cells 37(6):754–765. https://doi.org/10.1002/stem.2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Blackford SJI, Ng SS, Segal JM, King AJF, Austin AL, Kent D, Moore J, Sheldon M, Ilic D, Dhawan A, Mitry RR, Rashid ST (2019) Validation of current good manufacturing practice compliant human pluripotent stem cell-derived hepatocytes for cell-based therapy. Stem Cells Transl Med 8(2):124–137. https://doi.org/10.1002/sctm.18-0084

    Article  CAS  PubMed  Google Scholar 

  52. Zhu J, Reynolds J, Garcia T, Cifuentes H, Chew S, Zeng X, Lamba DA (2018) Generation of transplantable retinal photoreceptors from a current good manufacturing practice-manufactured human induced pluripotent stem cell line. Stem cells Transl Med 7(2):210–219. https://doi.org/10.1002/sctm.17-0205

    Article  CAS  PubMed  Google Scholar 

  53. Hepburn AC, Curry EL, Moad M, Steele RE, Franco OE, Wilson L, Singh P, Buskin A, Crawford SE, Gaughan L, Mills IG, Hayward SW, Robson CN, Heer R (2020) Propagation of human prostate tissue from induced pluripotent stem cells. Stem cells Transl Med 9(7):734–745. https://doi.org/10.1002/sctm.19-0286

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tiemeier GL, de Koning R, Wang G, Kostidis S, Rietjens RGJ, Sol W, Dumas SJ, Giera M, van den Berg CW, Eikenboom JCJ, van den Berg BM, Carmeliet P, Rabelink TJ (2020) Lowering the increased intracellular pH of human-induced pluripotent stem cell-derived endothelial cells induces formation of mature Weibel-Palade bodies. Stem cells Transl Med 9(7):758–772. https://doi.org/10.1002/sctm.19-0392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rose M, Gao K, Cortez-Toledo E, Agu E, Hyllen AA, Conroy K, Pan G, Nolta JA, Wang A, Zhou P (2020) Endothelial cells derived from patients' induced pluripotent stem cells for sustained factor VIII delivery and the treatment of hemophilia A. Stem cells Transl Med 9(6):686–696. https://doi.org/10.1002/sctm.19-0261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, Murry CE (2020) Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol 17(6):341–359. https://doi.org/10.1038/s41569-019-0331-x

    Article  Google Scholar 

  57. Mithal A, Capilla A, Heinze D, Berical A, Villacorta-Martin C, Vedaie M, Jacob A, Abo K, Szymaniak A, Peasley M, Stuffer A, Mahoney J, Kotton DN, Hawkins F, Mostoslavsky G (2020) Generation of mesenchyme free intestinal organoids from human induced pluripotent stem cells. Nat Commun 11(1):215. https://doi.org/10.1038/s41467-019-13916-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Koning M, van den Berg CW, Rabelink TJ (2020) Stem cell-derived kidney organoids: engineering the vasculature. Cel Mol Life Sci 77(12):2257–2273. https://doi.org/10.1007/s00018-019-03401-0

    Article  CAS  Google Scholar 

  59. Meyfour A, Pahlavan S, Mirzaei M, Krijgsveld J, Baharvand H, Salekdeh GH (2020) The quest of cell surface markers for stem cell therapy. Cell Mol Life Sci. https://doi.org/10.1007/s00018-020-03602-y

    Article  PubMed  Google Scholar 

  60. Ohzeki J, Nakano M, Okada T, Masumoto H (2002) CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol 159(5):765–775. https://doi.org/10.1083/jcb.200207112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kouprina N, Ebersole T, Koriabine M, Pak E, Rogozin IB, Katoh M, Oshimura M, Ogi K, Peredelchuk M, Solomon G, Brown W, Barrett JC, Larionov V (2003) Cloning of human centromeres by transformation-associated recombination in yeast and generation of functional human artificial chromosomes. Nucleic Acids Res 31(3):922–934. https://doi.org/10.1093/nar/gkg182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ebersole T, Okamoto Y, Noskov VN, Kouprina N, Kim JH, Leem SH, Barrett JC, Masumoto H, Larionov V (2005) Rapid generation of long synthetic tandem repeats and its application for analysis in human artificial chromosome formation. Nucleic Acids Res 33(15):e130. https://doi.org/10.1093/nar/gni129

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kim JH, Kononenko A, Erliandri I, Kim TA, Nakano M, Iida Y, Barrett JC, Oshimura M, Masumoto H, Earnshaw WC, Larionov V, Kouprina N (2011) Human artificial chromosome (HAC) vector with a conditional centromere for correction of genetic deficiencies in human cells. Proc Natl Acad Sci USA 108(50):20048–20053. https://doi.org/10.1073/pnas.1114483108

    Article  PubMed  Google Scholar 

  64. Kouprina N, Samoshkin A, Erliandri I, Nakano M, Lee HS, Fu H, Iida Y, Aladjem M, Oshimura M, Masumoto H, Earnshaw WC, Larionov V (2012) Organization of synthetic alphoid DNA array in human artificial chromosome (HAC) with a conditional centromere. ACS Synth Biol 1(12):590–601. https://doi.org/10.1021/sb3000436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Erliandri I, Fu H, Nakano M, Kim JH, Miga KH, Liskovykh M, Earnshaw WC, Masumoto H, Kouprina N, Aladjem MI, Larionov V (2014) Replication of alpha-satellite DNA arrays in endogenous human centromeric regions and in human artificial chromosome. Nucleic Acids Res 42(18):11502–11516. https://doi.org/10.1093/nar/gku835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kouprina N, Larionov V (2015) Recent advances in chromosome engineering. Chromosome Res 23(1):1–5. https://doi.org/10.1007/s10577-015-9469-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kononenko AV, Lee NC, Liskovykh M, Masumoto H, Earnshaw WC, Larionov V, Kouprina N (2015) Generation of a conditionally self-eliminating HAC gene delivery vector through incorporation of a tTAVP64 expression cassette. Nucleic Acids Res 43(9):e57. https://doi.org/10.1093/nar/gkv124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kouprina N, Liskovykh M, Lee NCO, Noskov VN, Waterfall JJ, Walker RL, Meltzer PS, Topol EJ, Larionov V (2018) Analysis of the 9p21.3 sequence associated with coronary artery disease reveals a tendency for duplication in a CAD patient. Oncotarget 9(20):15275–15291. https://doi.org/10.18632/oncotarget.24567

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P, Kandels-Lewis S, Larionov V, Earnshaw WC, Masumoto H (2008) Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 14(4):507–522. https://doi.org/10.1016/j.devcel.2008.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kouprina N, Lee NC, Kononenko AV, Samoshkin A, Larionov V (2015) From selective full-length genes isolation by TAR cloning in yeast to their expression from HAC vectors in human cells. Methods Mol Biol 1227:3–26. https://doi.org/10.1007/978-1-4939-1652-8_1

    Article  CAS  PubMed  Google Scholar 

  71. Iida Y, Kim JH, Kazuki Y, Hoshiya H, Takiguchi M, Hayashi M, Erliandri I, Lee HS, Samoshkin A, Masumoto H, Earnshaw WC, Kouprina N, Larionov V, Oshimura M (2010) Human artificial chromosome with a conditional centromere for gene delivery and gene expression. DNA Res 17(5):293–301. https://doi.org/10.1093/dnares/dsq020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kononenko AV, Lee NC, Earnshaw WC, Kouprina N, Larionov V (2013) Re-engineering an alphoid(tetO)-HAC-based vector to enable high-throughput analyses of gene function. Nucleic Acids Res 41(10):e107. https://doi.org/10.1093/nar/gkt205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Molina O, Kouprina N, Masumoto H, Larionov V, Earnshaw WC (2017) Using human artificial chromosomes to study centromere assembly and function. Chromosoma 126(5):559–575. https://doi.org/10.1007/s00412-017-0633-x

    Article  CAS  PubMed  Google Scholar 

  74. Lee NC, Kononenko AV, Lee HS, Tolkunova EN, Liskovykh MA, Masumoto H, Earnshaw WC, Tomilin AN, Larionov V, Kouprina N (2013) Protecting a transgene expression from the HAC-based vector by different chromatin insulators. Cell Mol Life Sci 70(19):3723–3737. https://doi.org/10.1007/s00018-013-1362-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pesenti E, Kouprina N, Liskovykh M, Aurich-Costa J, Larionov V, Masumoto H, Earnshaw WC, Molina O (2018) Generation of a synthetic human chromosome with two centromeric domains for advanced epigenetic engineering studies. ACS Synth Biol 7(4):1116–1130. https://doi.org/10.1021/acssynbio.8b00018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Logsdon GA, Gambogi CW, Liskovykh MA, Barrey EJ, Larionov V, Miga KH, Heun P, Black BE (2019) Human artificial chromosomes that bypass centromeric DNA. Cell 178(3):624–639 e619. https://doi.org/10.1016/j.cell.2019.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rusk N (2019) HACs with non-repetitive centromeres. Nat Methods 16(10):959. https://doi.org/10.1038/s41592-019-0600-y

    Article  CAS  PubMed  Google Scholar 

  78. Kazuki Y, Hoshiya H, Takiguchi M, Abe S, Iida Y, Osaki M, Katoh M, Hiratsuka M, Shirayoshi Y, Hiramatsu K, Ueno E, Kajitani N, Yoshino T, Kazuki K, Ishihara C, Takehara S, Tsuji S, Ejima F, Toyoda A, Sakaki Y, Larionov V, Kouprina N, Oshimura M (2011) Refined human artificial chromosome vectors for gene therapy and animal transgenesis. Gene Ther 18(4):384–393. https://doi.org/10.1038/gt.2010.147

    Article  CAS  PubMed  Google Scholar 

  79. Takiguchi M, Kazuki Y, Hiramatsu K, Abe S, Iida Y, Takehara S, Nishida T, Ohbayashi T, Wakayama T, Oshimura M (2014) A novel and stable mouse artificial chromosome vector. ACS Synth Biol 3(12):903–914. https://doi.org/10.1021/sb3000723

    Article  CAS  PubMed  Google Scholar 

  80. Hiratsuka M, Ueda K, Uno N, Uno K, Fukuhara S, Kurosaki H, Takehara S, Osaki M, Kazuki Y, Kurosawa Y, Nakamura T, Katoh M, Oshimura M (2015) Retargeting of microcell fusion towards recipient cell-oriented transfer of human artificial chromosome. BMC Biotechnol 15:58. https://doi.org/10.1186/s12896-015-0142-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hiratsuka M, Uno N, Ueda K, Kurosaki H, Imaoka N, Kazuki K, Ueno E, Akakura Y, Katoh M, Osaki M, Kazuki Y, Nakagawa M, Yamanaka S, Oshimura M (2011) Integration-free iPS cells engineered using human artificial chromosome vectors. PLoS ONE 6(10):e25961. https://doi.org/10.1371/journal.pone.0025961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Uno N, Uno K, Komoto S, Suzuki T, Hiratsuka M, Osaki M, Kazuki Y, Oshimura M (2015) Development of a safeguard system using an episomal mammalian artificial chromosome for gene and cell therapy. Mol Ther Nucleic Acids 4:e272. https://doi.org/10.1038/mtna.2015.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yamaguchi S, Kazuki Y, Nakayama Y, Nanba E, Oshimura M, Ohbayashi T (2011) A method for producing transgenic cells using a multi-integrase system on a human artificial chromosome vector. PLoS ONE 6(2):e17267. https://doi.org/10.1371/journal.pone.0017267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Suzuki T, Kazuki Y, Oshimura M, Hara T (2014) A novel system for simultaneous or sequential integration of multiple gene-loading vectors into a defined site of a human artificial chromosome. PLoS ONE 9(10):e110404. https://doi.org/10.1371/journal.pone.0110404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee NCO, Kim JH, Petrov NS, Lee HS, Masumoto H, Earnshaw WC, Larionov V, Kouprina N (2018) Method to assemble genomic DNA fragments or genes on human artificial chromosome with regulated kinetochore using a multi-integrase system. ACS synth Biol 7(1):63–74. https://doi.org/10.1021/acssynbio.7b00209

    Article  CAS  PubMed  Google Scholar 

  86. Suzuki N, Nishii K, Okazaki T, Ikeno M (2006) Human artificial chromosomes constructed using the bottom-up strategy are stably maintained in mitosis and efficiently transmissible to progeny mice. J Biol Chem 281(36):26615–26623. https://doi.org/10.1074/jbc.M603053200

    Article  CAS  PubMed  Google Scholar 

  87. Weuts A, Voet T, Verbeeck J, Lambrechts N, Wirix E, Schoonjans L, Danloy S, Marynen P, Froyen G (2012) Telomere length homeostasis and telomere position effect on a linear human artificial chromosome are dictated by the genetic background. Nucleic Acids Res 40(22):11477–11489. https://doi.org/10.1093/nar/gks926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ikeno M, Inagaki H, Nagata K, Morita M, Ichinose H, Okazaki T (2002) Generation of human artificial chromosomes expressing naturally controlled guanosine triphosphate cyclohydrolase I gene. Genes Cells 7(10):1021–1032

    Article  CAS  Google Scholar 

  89. Hasegawa Y, Ikeno M, Suzuki N, Nakayama M, Ohara O (2018) Improving the efficiency of gene insertion in a human artificial chromosome vector and its transfer in human-induced pluripotent stem cells. Biol Methods Protoc 3(1):1–10. https://doi.org/10.1093/biomethods/bpy013

    Article  CAS  Google Scholar 

  90. Anderson RP, Voziyanova E, Voziyanov Y (2012) Flp and Cre expressed from Flp-2A-Cre and Flp-IRES-Cre transcription units mediate the highest level of dual recombinase-mediated cassette exchange. Nucleic Acids Res 40(8):e62. https://doi.org/10.1093/nar/gks027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Suzuki E, Nakayama M (2011) VCre/VloxP and SCre/SloxP: new site-specific recombination systems for genome engineering. Nucleic Acids Res 39(8):e49. https://doi.org/10.1093/nar/gkq1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Moralli D, Simpson KM, Wade-Martins R, Monaco ZL (2006) A novel human artificial chromosome gene expression system using herpes simplex virus type 1 vectors. EMBO Rep 7(9):911–918. https://doi.org/10.1038/sj.embor.7400768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mandegar MA, Moralli D, Khoja S, Cowley S, Chan DY, Yusuf M, Mukherjee S, Blundell MP, Volpi EV, Thrasher AJ, James W, Monaco ZL (2011) Functional human artificial chromosomes are generated and stably maintained in human embryonic stem cells. Hum Mol Genet 20(15):2905–2913. https://doi.org/10.1093/hmg/ddr144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Moralli D, Monaco ZL (2015) Developing de novo human artificial chromosomes in embryonic stem cells using HSV-1 amplicon technology. Chromosome Res 23(1):105–110. https://doi.org/10.1007/s10577-014-9456-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Moralli D, Monaco ZL (2020) Gene expressing human artificial chromosome vectors: Advantages and challenges for gene therapy. Exp Cell Res 390(1):111931. https://doi.org/10.1016/j.yexcr.2020.111931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chan DY, Moralli D, Wheatley L, Jankowska JD, Monaco ZL (2020) Multigene human artificial chromosome vector delivery with herpes simplex virus 1 amplicons. Exp Cell Res 338(2):111840. https://doi.org/10.1016/j.yexcr.2020.111840

    Article  CAS  Google Scholar 

  97. Doherty AM, Fisher EM (2003) Microcell-mediated chromosome transfer (MMCT): small cells with huge potential. Mamm Genome 14(9):583–592. https://doi.org/10.1007/s00335-003-4002-0

    Article  PubMed  Google Scholar 

  98. Katoh M, Kazuki Y, Kazuki K, Kajitani N, Takiguchi M, Nakayama Y, Nakamura T, Oshimura M (2010) Exploitation of the interaction of measles virus fusogenic envelope proteins with the surface receptor CD46 on human cells for microcell-mediated chromosome transfer. BMC Biotechnol 10:37. https://doi.org/10.1186/1472-6750-10-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nakayama Y, Uno N, Uno K, Mizoguchi Y, Komoto S, Kazuki Y, Nanba E, Inoue T, Oshimura M (2015) Recurrent micronucleation through cell cycle progression in the presence of microtubule inhibitors. Cell Struct Funct 40(1):51–59. https://doi.org/10.1247/csf.14005

    Article  CAS  PubMed  Google Scholar 

  100. Liskovykh M, Lee NC, Larionov V, Kouprina N (2016) Moving toward a higher efficiency of microcell-mediated chromosome transfer. Mol Ther 3:16043. https://doi.org/10.1038/mtm.2016.43

    Article  CAS  Google Scholar 

  101. Fournier RE, Ruddle FH (1977) Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proc Natl Acad Sci USA 74(1):319–323. https://doi.org/10.1073/pnas.74.1.319

    Article  CAS  PubMed  Google Scholar 

  102. Yamaguchi S, Ren X, Katoh M, Miyata K, Fukushima H, Inoue T, Oshimura M (2006) A new method of microcell-mediated transfer of human artificial chromosomes using a hemagglutinating virus of Japan envelope. Chromosome Sci 9(2):65–73

    CAS  Google Scholar 

  103. Uno N, Uno K, Zatti S, Ueda K, Hiratsuka M, Katoh M, Oshimura M (2013) The transfer of human artificial chromosomes via cryopreserved microcells. Cytotechnology 65(5):803–809. https://doi.org/10.1007/s10616-013-9548-4

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sinenko SA, Skvortsova EV, Liskovykh MA, Ponomartsev SV, Kuzmin AA, Khudiakov AA, Malashicheva AB, Alenina N, Larionov V, Kouprina N, Tomilin AN (2018) Transfer of synthetic human chromosome into human induced pluripotent stem cells for biomedical applications. Cells 7(12):1–14. https://doi.org/10.3390/cells7120261

    Article  CAS  Google Scholar 

  105. Benedetti S, Uno N, Hoshiya H, Ragazzi M, Ferrari G, Kazuki Y, Moyle LA, Tonlorenzi R, Lombardo A, Chaouch S, Mouly V, Moore M, Popplewell L, Kazuki K, Katoh M, Naldini L, Dickson G, Messina G, Oshimura M, Cossu G, Tedesco FS (2018) Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next-generation human artificial chromosomes for Duchenne muscular dystrophy. EMBO molecular medicine 10(2):254–275. https://doi.org/10.15252/emmm.201607284

    Article  CAS  PubMed  Google Scholar 

  106. Suzuki T, Kazuki Y, Oshimura M, Hara T (2016) Highly efficient transfer of chromosomes to a broad range of target cells using Chinese hamster ovary cells expressing Murine Leukemia virus-derived envelope proteins. PLoS ONE 11(6):e0157187. https://doi.org/10.1371/journal.pone.0157187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shinohara T, Kazuki K, Ogonuki N, Morimoto H, Matoba S, Hiramatsu K, Honma K, Suzuki T, Hara T, Ogura A, Oshimura M, Kanatsu-Shinohara M, Kazuki Y (2017) Transfer of a mouse artificial chromosome into spermatogonial stem cells generates transchromosomic mice. Stem cell reports 9(4):1180–1191. https://doi.org/10.1016/j.stemcr.2017.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kozak CA (2010) The mouse "xenotropic" gamma retroviruses and their XPR1 receptor. Retrovirology 7:101. https://doi.org/10.1186/1742-4690-7-101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Suzuki N, Itou T, Hasegawa Y, Okazaki T, Ikeno M (2010) Cell to cell transfer of the chromatin-packaged human beta-globin gene cluster. Nucleic Acids Res 38(5):e33. https://doi.org/10.1093/nar/gkp1168

    Article  CAS  PubMed  Google Scholar 

  110. Hoshiya H, Kazuki Y, Abe S, Takiguchi M, Kajitani N, Watanabe Y, Yoshino T, Shirayoshi Y, Higaki K, Messina G, Cossu G, Oshimura M (2009) A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene. Mol Ther 17(2):309–317. https://doi.org/10.1038/mt.2008.253

    Article  CAS  PubMed  Google Scholar 

  111. Paulis M, Susani L, Castelli A, Suzuki T, Hara T, Straniero L, Duga S, Strina D, Mantero S, Caldana E, Sergi LS, Villa A, Vezzoni P (2020) Chromosome transplantation: a possible approach to treat human X-linked disorders. Mol Ther 17:369–377. https://doi.org/10.1016/j.omtm.2020.01.003

    Article  CAS  Google Scholar 

  112. Ito M, Ikeno M, Nagata H, Yamamoto T, Hiroguchi A, Fox IJ, Miyakawa S (2009) Treatment of nonalbumin rats by transplantation of immortalized hepatocytes using artificial human chromosome. Transpl Proc 41(1):422–424. https://doi.org/10.1016/j.transproceed.2008.10.023

    Article  CAS  Google Scholar 

  113. Ikeno M, Suzuki N, Hasegawa Y, Okazaki T (2009) Manipulating transgenes using a chromosome vector. Nucleic Acids Res 37(6):e44. https://doi.org/10.1093/nar/gkp058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ikeno M, Suzuki N, Kamiya M, Takahashi Y, Kudoh J, Okazaki T (2012) LINE1 family member is negative regulator of HLA-G expression. Nucleic Acids Res 40(21):10742–10752. https://doi.org/10.1093/nar/gks874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Miyamoto K, Suzuki N, Sakai K, Asakawa S, Okazaki T, Kudoh J, Ikeno M, Shimizu N (2014) A novel mouse model for Down syndrome that harbor a single copy of human artificial chromosome (HAC) carrying a limited number of genes from human chromosome 21. Transgenic Res 23(2):317–329. https://doi.org/10.1007/s11248-013-9772-x

    Article  CAS  PubMed  Google Scholar 

  116. Hasegawa Y, Ishikura T, Hasegawa T, Watanabe T, Suzuki J, Nakayama M, Okamura Y, Okazaki T, Koseki H, Ohara O, Ikeno M, Masumoto H (2015) Generating a transgenic mouse line stably expressing human MHC surface antigen from a HAC carrying multiple genomic BACs. Chromosoma 124(1):107–118. https://doi.org/10.1007/s00412-014-0488-3

    Article  CAS  PubMed  Google Scholar 

  117. Rocchi L, Braz C, Cattani S, Ramalho A, Christan S, Edlinger M, Ascenzioni F, Laner A, Kraner S, Amaral M, Schindelhauer D (2010) Escherichia coli-cloned CFTR loci relevant for human artificial chromosome therapy. Hum Gene Ther 21(9):1077–1092. https://doi.org/10.1089/hum.2009.225

    Article  CAS  PubMed  Google Scholar 

  118. Breman AM, Steiner CM, Slee RB, Grimes BR (2008) Input DNA ratio determines copy number of the 33 kb Factor IX gene on de novo human artificial chromosomes. Mol Ther 16(2):315–323. https://doi.org/10.1038/sj.mt.6300361

    Article  CAS  PubMed  Google Scholar 

  119. Moriwaki T, Abe S, Oshimura M, Kazuki Y (2020) Transchromosomic technology for genomically humanized animals. Exp Cell Res 390(2):111914. https://doi.org/10.1016/j.yexcr.2020.111914

    Article  CAS  PubMed  Google Scholar 

  120. Liskovykh M, Ponomartsev S, Popova E, Bader M, Kouprina N, Larionov V, Alenina N, Tomilin A (2015) Stable maintenance of de novo assembled human artificial chromosomes in embryonic stem cells and their differentiated progeny in mice. Cell Cycle 14(8):1268–1273. https://doi.org/10.1080/15384101.2015.1014151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ponomartsev SV, Sinenko SA, Skvortsova EV, Liskovykh MA, Voropaev IN, Savina MM, Kuzmin AA, Kuzmina EY, Kondrashkina AM, Larionov V, Kouprina N, Tomilin AN (2020) Human Alphoid(tetO) artificial chromosome as a gene therapy vector for the developing hemophilia a model in mice. Cells 9(4):879. https://doi.org/10.3390/cells9040879

    Article  CAS  PubMed Central  Google Scholar 

  122. Ohzeki J, Bergmann JH, Kouprina N, Noskov VN, Nakano M, Kimura H, Earnshaw WC, Larionov V, Masumoto H (2012) Breaking the HAC Barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly. EMBO J 31(10):2391–2402. https://doi.org/10.1038/emboj.2012.82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the reviewer for valuable comments. This work was supported by the Saint-Petersburg State University intramural grant 60257027, Russian Science Foundation grant 20-14-00242.

Funding

The Saint-Petersburg State University intramural grant 60257027, Russian Science Foundation grant 20–14-00242.

Author information

Authors and Affiliations

Authors

Contributions

S.A.S.: writing a draft of the manuscript; S.V.P.: figure artwork; S.A.S., S.V.P. and A.N.T.: manuscript writing; A.N.T.: manuscript review and editing; S.A.S. and A.N.T.: review and final approval of the manuscript.

Corresponding authors

Correspondence to Sergey A. Sinenko or Alexey N. Tomilin.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinenko, S.A., Ponomartsev, S.V. & Tomilin, A.N. Pluripotent stem cell-based gene therapy approach: human de novo synthesized chromosomes. Cell. Mol. Life Sci. 78, 1207–1220 (2021). https://doi.org/10.1007/s00018-020-03653-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03653-1

Keyword

Navigation