Skip to main content

CRISPR Manipulations in Stem Cell Lines

  • Protocol
  • First Online:
Retinitis Pigmentosa

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2560))

Abstract

Insights into genome engineering in cells have allowed researchers to cultivate and modify cells as organoids that display structural and phenotypic features of human diseases or normal health status. The generation of targeted mutants is a crucial step toward studying the biomedical effect of genes of interest. Modified organoids derived from patients’ tissue cells are used as models to study diseases and test novel drugs. CRISPR-Cas9 technology has contributed to an explosion of advances that have the ability to edit genomes for the study of monogenic diseases and cancers. The generation of such mutants in human induced pluripotent stem cells (iPSCs) is of utmost importance as these cells carry the potential to be differentiated into any cell lineage. We describe recent developments that are broadening our understanding and extend DNA specificity, product selectivity, and fundamental capabilities. Furthermore, fundamental capabilities and remarkable advancements in basic research, biotechnology, and therapeutics development in cell engineering are detailed within this chapter. Using the CRISPR/Cas9 nuclease system for induction of targeted double-strand breaks, gene editing of target loci in iPSCs can be achieved with high efficiency. This chapter includes detailed protocols for the preparation of reagents to target loci of interest and transfection to genotype single cell-derived iPSC clones. Furthermore, we provide a protocol for the convenient generation of ribonucleoprotein (RNP) delivered directly to cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zakrzewski W et al (2019) Stem cells: past, present, and future. Stem Cell Res Ther 10(1):68. https://doi.org/10.1186/s13287-019-1165-5

    Article  CAS  Google Scholar 

  2. Volarevic V et al (2018) Ethical and safety issues of stem cell-based therapy. Int J Med Sci 15(1):36–45. https://doi.org/10.7150/ijms.21666

    Article  CAS  Google Scholar 

  3. Wen W et al (2016) Enhanced generation of integration-free iPSCs from human adult peripheral blood mononuclear cells with an optimal combination of episomal vectors. Stem Cell Reports 6(6):873–884. https://doi.org/10.1016/j.stemcr.2016.04.005

    Article  CAS  Google Scholar 

  4. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512. https://doi.org/10.1016/0092-8674(87)90646-5

    Article  CAS  Google Scholar 

  5. San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257. https://doi.org/10.1146/annurev.biochem.77.061306.125255

    Article  CAS  Google Scholar 

  6. Capecchi MR (1989) Altering the genome by homologous recombination. Science 244(4910):1288–1292. https://doi.org/10.1126/science.2660260

    Article  CAS  Google Scholar 

  7. Urnov FD et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636–646. https://doi.org/10.1038/nrg2842

    Article  CAS  Google Scholar 

  8. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55. https://doi.org/10.1038/nrm3486

    Article  CAS  Google Scholar 

  9. Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  Google Scholar 

  10. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  Google Scholar 

  11. Makarova KS et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13(11):722–736. https://doi.org/10.1038/nrmicro3569

    Article  CAS  Google Scholar 

  12. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211. https://doi.org/10.1146/annurev.biochem.052308.093131

    Article  CAS  Google Scholar 

  13. Wang H et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. https://doi.org/10.1016/j.cell.2013.04.025

    Article  CAS  Google Scholar 

  14. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

    Article  CAS  Google Scholar 

  15. Jang HK et al (2020) Current trends in gene recovery mediated by the CRISPR-Cas system. Exp Mol Med 52(7):1016–1027. https://doi.org/10.1038/s12276-020-0466-1

    Article  CAS  Google Scholar 

  16. Yamamoto Y, Gerbi SA (2018) Making ends meet: targeted integration of DNA fragments by genome editing. Chromosoma 127(4):405–420. https://doi.org/10.1007/s00412-018-0677-6

    Article  CAS  Google Scholar 

  17. Paquet D et al (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533(7601):125–129. https://doi.org/10.1038/nature17664

    Article  CAS  Google Scholar 

  18. Zhang JP et al (2017) Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol 18(1):35. https://doi.org/10.1186/s13059-017-1164-8

    Article  CAS  Google Scholar 

  19. Li XL et al (2018) Highly efficient genome editing via CRISPR-Cas9 in human pluripotent stem cells is achieved by transient BCL-XL overexpression. Nucleic Acids Res 46(19):10195–10215. https://doi.org/10.1093/nar/gky804

    Article  CAS  Google Scholar 

  20. Yao X et al (2017) Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res 27(6):801–814. https://doi.org/10.1038/cr.2017.76

    Article  CAS  Google Scholar 

  21. Chen X et al (2017) In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting. Nat Commun 8(1):657. https://doi.org/10.1038/s41467-017-00687-1

    Article  CAS  Google Scholar 

  22. Hsu PD et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. https://doi.org/10.1038/nbt.2647

    Article  CAS  Google Scholar 

  23. Zou J et al (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5(1):97–110. https://doi.org/10.1016/j.stem.2009.05.023

    Article  CAS  Google Scholar 

  24. He X et al (2016) Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res 44(9):e85. https://doi.org/10.1093/nar/gkw064

    Article  CAS  Google Scholar 

  25. Byrne SM et al (2015) Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 43(3):e21. https://doi.org/10.1093/nar/gku1246

    Article  CAS  Google Scholar 

  26. Hayashi Y, Ohnuma K, Furue MK (2019) Pluripotent stem cell heterogeneity. Adv Exp Med Biol 1123:71–94. https://doi.org/10.1007/978-3-030-11096-3_6

    Article  CAS  Google Scholar 

  27. De Los Angeles A et al (2015) Hallmarks of pluripotency. Nature 525(7570):469–478. https://doi.org/10.1038/nature15515

    Article  CAS  Google Scholar 

  28. Montagnani S et al (2016) Adult stem cells in tissue maintenance and regeneration. Stem Cells Int 2016:7362879. https://doi.org/10.1155/2016/7362879

    Article  Google Scholar 

  29. Kim EJ, Kang KH, Ju JH (2017) CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Korean J Intern Med 32(1):42–61. https://doi.org/10.3904/kjim.2016.198

    Article  CAS  Google Scholar 

  30. Reisman M, Adams KT (2014) Stem cell therapy: a look at current research, regulations, and remaining hurdles. P T 39(12):846–857

    Google Scholar 

  31. Barman A, Deb B, Chakraborty S (2020) A glance at genome editing with CRISPR-Cas9 technology. Curr Genet 66(3):447–462. https://doi.org/10.1007/s00294-019-01040-3

    Article  CAS  Google Scholar 

  32. Memi F, Ntokou A, Papangeli I (2018) CRISPR/Cas9 gene-editing: research technologies, clinical applications and ethical considerations. Semin Perinatol 42(8):487–500. https://doi.org/10.1053/j.semperi.2018.09.003

    Article  Google Scholar 

  33. Shinwari ZK, Tanveer F, Khalil AT (2018) Ethical issues regarding CRISPR mediated genome editing. Curr Issues Mol Biol 26:103–110. https://doi.org/10.21775/cimb.026.103

    Article  Google Scholar 

Download references

Conflict of Interest

Stephen H. Tsang receives grant support from Abeona Therapeutics, Inc and Emendo. He is also the founder of Rejuvitas and is on the scientific and clinical advisory board for Nanoscope Therapeutics and Medical Excellence Capital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Tsang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chang, YJ., Cui, X., Levi, S.R., Jenny, L.A., Tsang, S.H. (2023). CRISPR Manipulations in Stem Cell Lines. In: Tsang, S.H., Quinn, P.M. (eds) Retinitis Pigmentosa. Methods in Molecular Biology, vol 2560. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2651-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2651-1_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2650-4

  • Online ISBN: 978-1-0716-2651-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics