Skip to main content

Advertisement

Log in

A new generation of human artificial chromosomes for functional genomics and gene therapy

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Since their description in the late 1990s, human artificial chromosomes (HACs) carrying a functional kinetochore were considered as a promising system for gene delivery and expression with a potential to overcome many problems caused by the use of viral-based gene transfer systems. Indeed, HACs avoid the limited cloning capacity, lack of copy number control and insertional mutagenesis due to integration into host chromosomes that plague viral vectors. Nevertheless, until recently, HACs have not been widely recognized because of uncertainties of their structure and the absence of a unique gene acceptor site. The situation changed a few years ago after engineering of HACs with a single loxP gene adopter site and a defined structure. In this review, we summarize recent progress made in HAC technology and concentrate on details of two of the most advanced HACs, 21HAC generated by truncation of human chromosome 21 and alphoidtetO-HAC generated de novo using a synthetic tetO-alphoid DNA array. Multiple potential applications of the HAC vectors are discussed, specifically the unique features of two of the most advanced HAC cloning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lufino MM, Edser PA, Wade-Martins R (2008) Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression. Mol Ther 16:1525–1538

    Article  CAS  PubMed  Google Scholar 

  2. Epstein AL (2009) Progress and prospects: biological properties and technological advances of herpes simplex virus type 1-based amplicon vectors. Gene Ther 16:709–715

    Article  CAS  PubMed  Google Scholar 

  3. Mingozzi F, Katherine A, High KA (2011) Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Genet Rev 12:341–356

    Article  CAS  Google Scholar 

  4. Maier P, von Kalle C, Laufs S (2010) Retroviral vectors for gene therapy. Future Microbiol 5:1507–1523

    Article  CAS  PubMed  Google Scholar 

  5. Mátrai J, Chuah MK, VandenDriessche T (2010) Recent advances in lentiviral vector development and applications. Mol Ther 18:477–490

    Article  PubMed  Google Scholar 

  6. Buchholz CJ, Mühlebach MD, Cichutek K (2009) Lentiviral vectors with measles virus glycoproteins—dream team for gene transfer? Trends Biotechnol 27:259–265

    Article  CAS  PubMed  Google Scholar 

  7. Banasik MB, McCray PB Jr (2010) Integrase-defective lentiviral vectors: progress and applications. Gene Ther 17:150–157

    Article  CAS  PubMed  Google Scholar 

  8. Wanisch K, Yáñez-Muñoz RJ (2009) Integration-deficient lentiviral vectors: a slow coming of age. Mol Ther 17:1316–1332

    Article  CAS  PubMed  Google Scholar 

  9. Cartier N, Hacein-Bey-Abina S, Bartholomae CC et al (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–823

    Article  CAS  PubMed  Google Scholar 

  10. Lufino MM, Edser PA, Wade-Martins R (2008) Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression. Mol Ther 16:1525–1538

    Article  CAS  PubMed  Google Scholar 

  11. Hibbitt OC, Wade-Martins R (2006) Delivery of large genomic DNA inserts >100 kb using HSV-1 amplicons. Curr Gene Ther 6:325–336

    Article  CAS  PubMed  Google Scholar 

  12. Li CM, Park JH, Simonaro CM et al (2002) Insertional mutagenesis of the mouse acid ceramidase gene leads to early embryonic lethality in homozygotes and progressive lipid storage disease in heterozygotes. Genomics 79:218–224

    Article  CAS  PubMed  Google Scholar 

  13. Li Z, Düllmann J, Schiedlmeier B, Schmidt M et al (2002) Murine leukemia induced by retroviral gene marking. Science 296:497

    Article  CAS  PubMed  Google Scholar 

  14. Raper SE, Chirmule N, Lee FS et al (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80:148–158

    Article  CAS  PubMed  Google Scholar 

  15. Odom GL, Gregorevic P et al (2007) Viral-mediated gene therapy for the muscular dystrophies: successes, limitations and recent advances. Biochim Biophys Acta 1772:243–262

    Article  CAS  PubMed  Google Scholar 

  16. Cavazzana-Calvo M, Payen E, Negre O et al (2010) Transfusion independence and HMGA2 activation after gene therapy of human ß-thalassaemia. Nature 467:318–322

    Article  CAS  PubMed  Google Scholar 

  17. Saffery R, Choo KH (2002) Strategies for engineering human chromosomes with therapeutic potential. J Gene Med 4:5–13

    Article  PubMed  Google Scholar 

  18. Basu J, Willard HF (2006) Human artificial chromosomes: potential applications and clinical considerations. Pediatr Clin North Am 53:843–53, viii

    Google Scholar 

  19. Monaco ZL, Moralli D (2006) Progress in artificial chromosome technology. Biochem Soc Trans 34(Pt 2):324–327

    CAS  PubMed  Google Scholar 

  20. Ren X, Tahimic CG, Katoh M et al (2006) Human artificial chromosome vectors meet stem cells: new prospects for gene delivery. Stem Cell Rev 2(1):43–50

    CAS  PubMed  Google Scholar 

  21. Oshimura M, Katoh M (2008) Transfer of human artificial chromosome vectors into stem cells. Reprod Biomed 16(1):57–69

    Article  Google Scholar 

  22. Kazuki Y, Oshimura M (2011) Human artificial chromosomes for gene delivery and the development of animal models. Mol Ther 19(9):1591–1601

    Article  CAS  PubMed  Google Scholar 

  23. Ikeno M, Suzuki N (2011) Construction and use of a bottom-up HAC vector for transgene expression. Methods Mol Biol 738:101–110

    Article  CAS  PubMed  Google Scholar 

  24. Rudd MK, Mays RW, Schwartz S et al (2003) Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag. Mol Cell Biol 23(21):7689–7697

    Article  CAS  PubMed  Google Scholar 

  25. Grimes BR, Babcock J, Rudd MK et al (2004) Assembly and characterization of heterochromatin and euchromatin on human artificial chromosomes. Genome Biol 5(11):R89

    Article  PubMed  Google Scholar 

  26. Higgins AW, Gustashaw KM, Willard HF (2005) Engineered human dicentric chromosomes show centromere plasticity. Chromosome Res 13(8):745–762

    Article  CAS  PubMed  Google Scholar 

  27. Kazuki Y, Hoshiya H, Takiguchi M et al (2011) Refined human artificial chromosome vector for gene therapy and animal transgenesis. Gene Ther 18:384–393

    Article  CAS  PubMed  Google Scholar 

  28. Nakano M, Cardinale S, Noskov VN et al (2008) Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 14:507–522

    Article  CAS  PubMed  Google Scholar 

  29. Farr CJ, Stevanovic M, Thomson EJ et al (1992) Telomere-associated chromosome fragmentation: applications in genome manipulation and analysis. Nat Genet 2:275–282

    Article  CAS  PubMed  Google Scholar 

  30. Brown KE, Barnett MA, Burgtorf C et al (1994) Dissecting the centromere of the human Y chromosome with cloned telomeric DNA. Hum Mol Genet 3:1227–1237

    Article  CAS  PubMed  Google Scholar 

  31. Heller R, Brown KE, Burgtorf C et al (1996) Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage. Proc Natl Acad Sci USA 93:7125–7130

    Article  CAS  PubMed  Google Scholar 

  32. Mills W, Critcher R, Lee C et al (1999) Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40. Hum Mol Genet 8:751–761

    Article  CAS  PubMed  Google Scholar 

  33. Yang JW, Pendon C, Yang J et al (2000) Human mini-chromosomes with minimal centromeres. Hum Mol Genet 9:1891–1902

    Article  CAS  PubMed  Google Scholar 

  34. Kuroiwa Y, Tomizuka K, Shinohara T et al (2000) Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts. Nat Biotechnol 18:1086–1090

    Article  CAS  PubMed  Google Scholar 

  35. Shen MH, Mee PJ, Nichols J et al (2000) A structurally defined mini-chromosome vector for the mouse germ line. Curr Biol 10:31–34

    Article  CAS  PubMed  Google Scholar 

  36. Katoh M, Ayabe F, Norikane S et al (2004) Construction of a novel human artificial chromosome vector for gene delivery. Biochem Biophys Res Commun 321:280–290

    Article  CAS  PubMed  Google Scholar 

  37. Kakeda M, Nagata K, Osawa K et al (2011) A new chromosome 14-based human artificial chromosome (HAC) vector system for efficient transgene expression in human primary cells. Biochem Biophys Res Commun 415(3):439–444

    Article  CAS  PubMed  Google Scholar 

  38. Harrington JJ, Van Bokkelen G, Mays RW et al (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 15:345–355

    Article  CAS  PubMed  Google Scholar 

  39. Ikeno M, Grimes B, Okazaki T et al (1998) Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 16:431–439

    Article  CAS  PubMed  Google Scholar 

  40. Guiducci C, Ascenzioni F, Auriche C et al (1999) Use of a human minichromosome as a cloning and expression vector for mammalian cells. Hum Mol Genet 8:1417–1424

    Article  CAS  PubMed  Google Scholar 

  41. Ebersole TA, Ross A, Clark E et al (2000) Mammalian artificial chromosome formation from circular alphoid input DNA does not require telomere repeats. Hum Mol Genet 9:1623–1631

    Article  CAS  PubMed  Google Scholar 

  42. Grimes BR, Schindelhauer D, McGill NI et al (2001) Stable gene expression from a mammalian artificial chromosome. EMBO Rep 2:910–914

    Article  CAS  PubMed  Google Scholar 

  43. Mejía JE, Alazami A, Willmott A et al (2002) Efficiency of de novo centromere formation in human artificial chromosomes. Genomics 79:297–304

    Article  PubMed  Google Scholar 

  44. Kouprina N, Ebersole T, Koriabine M et al (2003) Cloning of human centromeres by transformation-associated recombination in yeast and generation of functional human artificial chromosomes. Nucleic Acids Res 31:922–934

    Article  CAS  PubMed  Google Scholar 

  45. Basu J, Stromberg G, Compitello G (2005) Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays. Nucleic Acids Res 33:587–596

    Article  CAS  PubMed  Google Scholar 

  46. Basu J, Compitello G, Stromberg G et al (2005) Efficient assembly of de novo human artificial chromosomes from large genomic loci. BMC Biotechnol 5:21

    Article  PubMed  Google Scholar 

  47. Kotzamanis G, Cheung W, Abdulrazzak H et al (2005) Construction of human artificial chromosome vectors by recombineering. Gene 351:29–38

    Article  CAS  PubMed  Google Scholar 

  48. Moralli D, Simpson KM, Wade-Martins R et al (2006) A novel human artificial chromosome gene expression system using herpes simplex virus type 1 vectors. EMBO Rep 7:911–918

    Article  CAS  PubMed  Google Scholar 

  49. Ohzeki JI, Bergmann JH, Kouprina N et al (2012) Breaking the HAC Barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly. EMBO J 31:2391–2402

    Google Scholar 

  50. Mejía JE, Willmott A, Levy E (2001) Functional complementation of a genetic deficiency with human artificial chromosomes. Am J Hum Genet 69:315–326

    Article  PubMed  Google Scholar 

  51. Ikeno M, Inagaki H, Nagata K et al (2002) Generation of human artificial chromosomes expressing naturally controlled guanosine triphosphate cyclohydrolase I gene. Genes Cells 7:1021–1032

    Article  CAS  PubMed  Google Scholar 

  52. Auriche C, Carpani D, Conese M et al (2002) Functional human CFTR produced by a stable minichromosome. EMBO Rep 3:862–868

    Article  CAS  PubMed  Google Scholar 

  53. Rocchi L, Braz C, Cattani S et al (2010) Escherichia coli-cloned CFTR loci relevant for human artificial chromosome therapy. Hum Gene Ther 21:1077–1092

    Article  CAS  PubMed  Google Scholar 

  54. Breman AM, Steiner CM, Slee RB et al (2008) Input DNA ratio determines copy number of the 33 kb Factor IX gene on de novo human artificial chromosomes. Mol Ther 16:315–323

    Article  CAS  PubMed  Google Scholar 

  55. Yamada H, Li YC, Nishikawa M et al (2008) Introduction of a CD40L genomic fragment via a human artificial chromosome vector permits cell-type-specific gene expression and induces immunoglobulin secretion. J Hum Genet 53:447–453

    Article  CAS  PubMed  Google Scholar 

  56. Kazuki Y, Hoshiya H, Kai Y et al (2008) Correction of a genetic defect in multipotent germline stem cells using a human artificial chromosome. Gene Ther 15(8):617–624

    Article  CAS  PubMed  Google Scholar 

  57. Hoshiya H, Kazuki Y, Abe S et al (2009) A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene. Mol Ther 17:309–317

    Article  CAS  PubMed  Google Scholar 

  58. Kim JH, Kononenko A, Erliandri I et al (2011) Human artificial chromosome (HAC) vector with a conditional centromere for correction of genetic deficiencies in human cells. Proc Natl Acad Sci USA 108(50):20048–20053

    Article  CAS  PubMed  Google Scholar 

  59. Kuroiwa Y, Kasinathan P, Choi YJ et al (2002) Cloned transchromosomic calves producing human immunoglobulin. Nat Biotechnol 20:889–894

    Article  CAS  PubMed  Google Scholar 

  60. Kuroiwa Y, Kasinathan P, Sathiyaseelan T et al (2009) Antigen-specific human polyclonal antibodies from hyperimmunized cattle. Nat Biotechnol 27:173–181

    Article  CAS  PubMed  Google Scholar 

  61. Suzuki N, Nishii K, Okazaki T et al (2006) Human artificial chromosomes constructed using the bottom-up strategy are stably maintained in mitosis and efficiently transmissible to progeny mice. J Biol Chem 281:26615–26623

    Article  CAS  PubMed  Google Scholar 

  62. Ito M, Ikeno M, Nagata H et al (2009) Treatment of nonalbumin rats by transplantation of immortalized hepatocytes using artificial human chromosome. Transplant Proc 41:422–424

    Article  CAS  PubMed  Google Scholar 

  63. Voet T, Schoenmakers E, Carpentier S et al (2003) Controlled transgene dosage and PAC-mediated transgenesis in mice using a chromosomal vector. Genomics 82(6):596–605

    Article  CAS  PubMed  Google Scholar 

  64. Kazuki Y, Hiratsuka M, Takiguchi M et al (2010) Complete genetic correction of iPSs cells from Duchenne muscular dystrophy. Mol Ther 18:386–393

    Article  CAS  PubMed  Google Scholar 

  65. Dafhnis-Calas F, Xu Z, Haines S et al (2005) Iterative in vivo assembly of large and complex transgenes by combining the activities of phiC31 integrase and Cre recombinase. Nucleic Acids Res 33(22):e189

    Article  PubMed  Google Scholar 

  66. Ren X, Katoh M, Hoshiya H et al (2005) A novel human artificial chromosome vector provides effective cell lineage-specific transgene expression in human mesenchymal stem cells. Stem Cells 23:1608–1616

    Article  CAS  PubMed  Google Scholar 

  67. Kazuki Y, Hoshiya H, Kai Y et al (2008) Correction of a genetic defect in multipotent germline stem cells using a human artificial chromosome. Gene Ther 15:617–624

    Article  CAS  PubMed  Google Scholar 

  68. Iida Y, Kim JH, Kazuki Y et al (2010) Human artificial chromosome with a conditional centromere for gene delivery and gene expression. DNA Res 17:293–301

    Article  CAS  PubMed  Google Scholar 

  69. Kakeda M, Hiratsuka M, Nagata K et al (2005) Human artificial chromosome (HAC) vector provides long-term therapeutic transgene expression in normal human primary fibroblasts. Gene Ther 12:852–856

    Article  CAS  PubMed  Google Scholar 

  70. Ebersole T, Okamoto Y, Noskov VN et al (2005) Rapid generation of long synthetic tandem repeats and its application for analysis in human artificial chromosome formation. Nucl Acids Res 33:e130

    Article  PubMed  Google Scholar 

  71. Kouprina N, Samoshkin A, Erliandri I et al (2012) Organization of synthetic alphoid DNA array in human artificial chromosome (HAC) with a conditional centromere. ASC Synthetic Biol (in press)

  72. Alazami AM, Mejía JE, Monaco ZL (2004) Human artificial chromosomes containing chromosome 17 alphoid DNA maintain an active centromere in murine cells but are not stable. Genomics 835:844–851

    Article  Google Scholar 

  73. Moralli D, Chan DY, Jefferson A (2009) HAC stability in murine cells is influenced by nuclear localization and chromatin organization. BMC Cell Biol 10:18

    Article  PubMed  Google Scholar 

  74. Fournier RE, Ruddle FH (1977) Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proc Natl Acad Sci USA 74:319–323

    Article  CAS  PubMed  Google Scholar 

  75. Koi M, Shimizu M, Morita H et al (1989) Construction of mouse A9 clones containing a single human chromosome tagged with neomycin-resistance gene via microcell fusion. Jpn J Cancer Res 80:413–418

    Article  CAS  PubMed  Google Scholar 

  76. Yamada H, Kunisato A, Kawahara M et al (2006) Exogenous gene expression and growth regulation of hematopoietic cells via a novel human artificial chromosome. J Hum Genet 51:147–150

    Article  CAS  PubMed  Google Scholar 

  77. Kinoshita Y, Kamitani H, Mamun MH et al (2010) A gene delivery system with a human artificial chromosome vector based on migration of mesenchymal stem cells towards human glioblastoma HTB14 cells. Neurol Res 32:429–437

    Article  PubMed  Google Scholar 

  78. Yamaguchi S, Ren X, Katoh M et al (2006) A new method of microcell-mediated transfer of human artificial chromosome using a hemagglutinating virus of Japan envelope. Chromosoma Sci 9:65–73

    CAS  Google Scholar 

  79. Katoh M, Kazuki Y, Kazuki K (2010) Exploitation of the interaction of measles virus fusogenic envelope proteins with the surface receptor CD46 on human cells for microcell-mediated chromosome transfer. BMC Biotechnol 10:37

    Article  PubMed  Google Scholar 

  80. de Jong G, Telenius A, Vanderbyl S et al (2001) Efficient in vitro transfer of a 60-Mb mammalian artificial chromosome into murine and hamster cells using cationic lipids and dendrimers. Chromosome Res 9(6):475–485

    Article  PubMed  Google Scholar 

  81. Suzuki N, Itou T, Hasegawa Y, Okazaki T et al (2010) Cell to cell transfer of the chromatin-packaged human beta-globin gene cluster. Nucleic Acids Res 38(5):e33

    Article  PubMed  Google Scholar 

  82. Larionov V, Kouprina N, Graves J et al (1996) Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination. Proc Natl Acad Sci USA 93(1):491–496

    Article  CAS  PubMed  Google Scholar 

  83. Kouprina N, Larionov V (2006) TAR cloning: insights into gene function, long-range haplotypes and genome structure and evolution. Nat Rev Genet 7:805–812

    Article  CAS  PubMed  Google Scholar 

  84. Kouprina N, Larionov V (2008) Selective isolation of genomic loci from complex genomes bytransformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nat Protocols 3:371–377

    Article  CAS  Google Scholar 

  85. Ayabe F, Katoh M, Inoue T et al (2005) A novel expression system for genomic DNA loci using a human artificial chromosome vector with transformation-associated recombination cloning. J Hum Genet 50:592–599

    Article  CAS  PubMed  Google Scholar 

  86. Yamaguchi S, Kazuki Y, Nakayama Y et al (2011) A method for producing transgenic cells using a multi-integrase system on a human artificial chromosome vector. PLoS ONE 6:e17267

    Article  CAS  PubMed  Google Scholar 

  87. Kanatsu-Shinohara M, Inoue K, Lee J et al (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119:1001–1012

    Article  CAS  PubMed  Google Scholar 

  88. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  89. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  90. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  CAS  PubMed  Google Scholar 

  91. Hiratsuka M, Uno N, Ueda K et al (2011) Integration-free iPS cells engineered using human artificial chromosome vectors. PLoS ONE 6(10):e25961

    Article  CAS  PubMed  Google Scholar 

  92. Kuroiwa Y, Kasinathan P, Choi YJ et al (2002) Cloned transchromosomic calves producing human immunoglobulin. Nat Biotechnol 20:889–894

    Article  CAS  PubMed  Google Scholar 

  93. Takahashi Y, Tsuji S, Kazuki Y et al (2010) Development of evaluation system for bioactive substances using human artificial chromosome-mediated osteocalcin gene expression. J Biochem 148:29–34

    Article  CAS  PubMed  Google Scholar 

  94. Janssen A, Kops GJ, Medema RH (2009) Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc Natl Acad Sci USA 106(45):19108–19113

    Article  CAS  PubMed  Google Scholar 

  95. Colombo R, Moll J (2010) Destabilizing aneuploidy by targeting cell cycle and mitotic checkpoint proteins in cancer cells. Curr Drug Targets 11(10):1325–1335

    Article  CAS  PubMed  Google Scholar 

  96. Pao W, Girard N (2011) New driver mutations in non-small-cell lung cancer. Lancet Oncol 12(2):175–180

    Article  CAS  PubMed  Google Scholar 

  97. Stirling PC, Bloom MS, Solanki-Patil T et al (2011) The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet 7(4):e1002057

    Article  CAS  PubMed  Google Scholar 

  98. Cardinale S, Bergmann JH, Kelly D et al (2009) Hierarchical inactivation of a synthetic human kinetochore by a chromatin modifier. Mol Biol Cell 20(19):4194–4204

    Article  CAS  PubMed  Google Scholar 

  99. Bergmann JH, Rodríguez MG, Martins NM et al (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30(2):328–340

    Article  CAS  PubMed  Google Scholar 

  100. Bergmann JH, Jakubsche JN, Martins NM et al (2012) Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function. J Cell Sci 125(Pt 2):411–421

    Article  CAS  PubMed  Google Scholar 

  101. Bergman JH, Martins NMC, Larionov V et al (2012) HACking the centromere chromatin code: in sights from human artificial chromosomes. Chromosome Res 20:505–519

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Intramural Research Program of the NIH NCI Center for Cancer Research (V.L.). This study was also supported by a grant-in-aid from the Ministry of Education, Science, Sports and Culture of Japan (H.M.) and by The Wellcome Trust, of which W.C.E. is a Principal Research Fellow (grant number 073915). The Wellcome Trust Centre for Cell Biology is supported by core grant numbers 077707 and 092076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalay Kouprina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouprina, N., Earnshaw, W.C., Masumoto, H. et al. A new generation of human artificial chromosomes for functional genomics and gene therapy. Cell. Mol. Life Sci. 70, 1135–1148 (2013). https://doi.org/10.1007/s00018-012-1113-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1113-3

Keywords

Navigation