Kirkwood TBL (2005) Understanding the odd science of aging. Cell 120:437–447. https://doi.org/10.1016/j.cell.2005.01.027
CAS
Article
PubMed
Google Scholar
Kölliker A (1855) Handbuch der gewebelehre des menschen. Für aerzte und studirende. W. Engelmann, Leipzig
Google Scholar
His W (1904) Die Entwickelung des menschlichen Gehirns während der ersten Monate, Untersuchungsergebnisse. Hirzel, Leipzig
Book
Google Scholar
Cajal SRY, DeFelipe J, Jones EG (1991) Cajal's degeneration and regeneration of the nervous system. Oxford University Press, Oxford
Book
Google Scholar
Gross CG (2000) Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 1:67–73. https://doi.org/10.1038/35036235
CAS
Article
PubMed
Google Scholar
Hamilton A (1901) The division of differentiated cells in the central nervous system of the white rat. J Comp Neurol 11:297–320. https://doi.org/10.1002/cne.910110403
Article
Google Scholar
Allen E (1912) The cessation of mitosis in the central nervous system of the albino rat. Waverley Press, Baltimore
Google Scholar
Altman J (1962) Are new neurons formed in the brains of adult mammals? Science 135:1127–1128. https://doi.org/10.1126/science.135.3509.1127
CAS
Article
PubMed
Google Scholar
Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335. https://doi.org/10.1002/cne.901240303
CAS
Article
PubMed
Google Scholar
Altman J, Das GD (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 126:337–389. https://doi.org/10.1002/cne.901260302
CAS
Article
PubMed
Google Scholar
Altman J (1963) Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec 145:573–591. https://doi.org/10.1002/ar.1091450409
CAS
Article
PubMed
Google Scholar
Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–457. https://doi.org/10.1002/cne.901370404
CAS
Article
PubMed
Google Scholar
Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci 80:2390–2394. https://doi.org/10.1073/pnas.80.8.2390
CAS
Article
PubMed
Google Scholar
Burd GD, Nottebohm F (1985) Ultrastructural characterization of synaptic terminals formed on newly generated neurons in a song control nucleus of the adult canary forebrain. J Comp Neurol 240:143–152. https://doi.org/10.1002/cne.902400204
CAS
Article
PubMed
Google Scholar
Paton JA, Nottebohm FN (1984) Neurons generated in the adult brain are recruited into functional circuits. Science 225:1046–1048. https://doi.org/10.1126/science.6474166
CAS
Article
PubMed
Google Scholar
Gould E, Reeves AJ, Fallah M et al (1999) Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci USA 96:5263–5267. https://doi.org/10.1073/pnas.96.9.5263
CAS
Article
PubMed
Google Scholar
Eriksson PS, Perfilieva E, Björk-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317. https://doi.org/10.1038/3305
CAS
Article
PubMed
Google Scholar
Curtis MA, Kam M, Nannmark U et al (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249. https://doi.org/10.1126/science.1136281
CAS
Article
PubMed
Google Scholar
Gage FH, Coates PW, Palmer TD et al (1995) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci 92:11879–11883. https://doi.org/10.1073/pnas.92.25.11879
CAS
Article
PubMed
Google Scholar
Roy NS, Wang S, Jiang L et al (2000) In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med 6:271–277. https://doi.org/10.1038/73119
CAS
Article
PubMed
Google Scholar
Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8:481–488
CAS
Article
Google Scholar
Spalding KL, Bergmann O, Alkass K et al (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227. https://doi.org/10.1016/j.cell.2013.05.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J et al (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Nat Med 25:554–560. https://doi.org/10.1038/s41591-019-0375-9
CAS
Article
PubMed
Google Scholar
Kornack DR, Rakic P (2001) Cell proliferation without neurogenesis in adult primate neocortex. Science 294:2127–2130. https://doi.org/10.1126/science.1065467
CAS
Article
PubMed
Google Scholar
Spalding KL, Bhardwaj RD, Buchholz BA et al (2005) Retrospective birth dating of cells in humans. Cell 122:133–143. https://doi.org/10.1016/j.cell.2005.04.028
CAS
Article
PubMed
Google Scholar
Apple DM, Fonseca RS, Kokovay E (2017) The role of adult neurogenesis in psychiatric and cognitive disorders. Brain Res 1655:270–276. https://doi.org/10.1016/j.brainres.2016.01.023
CAS
Article
PubMed
Google Scholar
Sorrells SF, Paredes MF, Cebrian-Silla A et al (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555:377–381. https://doi.org/10.1038/nature25975
CAS
Article
PubMed
PubMed Central
Google Scholar
Boldrini M, Fulmore CA, Tartt AN et al (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22:589–599.e5. https://doi.org/10.1016/j.stem.2018.03.015
CAS
Article
PubMed
PubMed Central
Google Scholar
Kempermann G, Gage FH, Aigner L et al (2018) Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 23:25–30. https://doi.org/10.1016/j.stem.2018.04.004
CAS
Article
PubMed
PubMed Central
Google Scholar
Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193. https://doi.org/10.1038/35058528
CAS
Article
PubMed
Google Scholar
Piet R, Vargová L, Syková E et al (2004) Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci USA 101:2151–2155. https://doi.org/10.1073/pnas.0308408100
CAS
Article
PubMed
Google Scholar
Pascual O, Casper KB, Kubera C et al (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116. https://doi.org/10.1126/science.1116916
CAS
Article
PubMed
Google Scholar
Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19:235–249. https://doi.org/10.1038/nrn.2018.19
CAS
Article
PubMed
Google Scholar
Brancaccio M, Edwards MD, Patton AP et al (2019) Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science 363:187–192. https://doi.org/10.1126/science.aat4104
CAS
Article
PubMed
PubMed Central
Google Scholar
Malatesta P, Appolloni I, Calzolari F (2008) Radial glia and neural stem cells. Cell Tissue Res 331:165–178. https://doi.org/10.1007/s00441-007-0481-8
Article
PubMed
Google Scholar
Delgado-Esteban M, García-Higuera I, Maestre C et al (2013) APC/C-Cdh1 coordinates neurogenesis and cortical size during development. Nat Commun 4:2879. https://doi.org/10.1038/ncomms3879
CAS
Article
PubMed
Google Scholar
Paridaen JT, Huttner WB (2014) Neurogenesis during development of the vertebrate central nervous system. EMBO Rep 15:351–364. https://doi.org/10.1002/embr.201438447
CAS
Article
PubMed
PubMed Central
Google Scholar
Bertipaglia C, Gonçalves JC, Vallee RB (2018) Nuclear migration in mammalian brain development. Semin Cell Dev Biol 82:57–66. https://doi.org/10.1016/j.semcdb.2017.11.033
Article
PubMed
Google Scholar
Goyal MS, Hawrylycz M, Miller JA et al (2014) Aerobic glycolysis in the human brain is associated with development and neotenous gene expression. Cell Metab 19:49–57. https://doi.org/10.1016/j.cmet.2013.11.020
CAS
Article
PubMed
PubMed Central
Google Scholar
Hawkins RA, Williamson DH, Krebs HA (1971) Ketone-body utilization by adult and suckling rat brain in vivo. Biochem J 122:13–18. https://doi.org/10.1042/bj1220013
CAS
Article
PubMed
PubMed Central
Google Scholar
Vannucci SJ, Simpson IA (2003) Developmental switch in brain nutrient transporter expression in the rat. Am J Physiol Endocrinol Metab 285:E1127–E1134. https://doi.org/10.1152/ajpendo.00187.2003
CAS
Article
PubMed
Google Scholar
Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758. https://doi.org/10.1152/physrev.1997.77.3.731
CAS
Article
PubMed
Google Scholar
Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145. https://doi.org/10.1097/00004647-200110000-00001
CAS
Article
PubMed
Google Scholar
Jain V, Langham MC, Wehrli FW (2010) MRI estimation of global brain oxygen consumption rate. J Cereb Blood Flow Metab 30:1598–1607. https://doi.org/10.1038/jcbfm.2010.49
CAS
Article
PubMed
PubMed Central
Google Scholar
Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36:587–597. https://doi.org/10.1016/j.tins.2013.07.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Bond AM, Ming G-L, Song H (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17:385–395. https://doi.org/10.1016/j.stem.2015.09.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Marshall CAG, Suzuki SO, Goldman JE (2003) Gliogenic and neurogenic progenitors of the subventricular zone: who are they, where did they come from, and where are they going? Glia 43:52–61. https://doi.org/10.1002/glia.10213
Article
PubMed
Google Scholar
Bonaguidi MA, Wheeler MA, Shapiro JS et al (2011) In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145:1142–1155. https://doi.org/10.1016/j.cell.2011.05.024
CAS
Article
PubMed
PubMed Central
Google Scholar
Ernst A, Alkass K, Bernard S et al (2014) Neurogenesis in the striatum of the adult human brain. Cell 156:1072–1083. https://doi.org/10.1016/j.cell.2014.01.044
CAS
Article
PubMed
Google Scholar
Sanai N, Nguyen T, Ihrie RA et al (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478:382–386. https://doi.org/10.1038/nature10487
CAS
Article
PubMed
PubMed Central
Google Scholar
Gonçalves JT, Schafer ST, Gage FH (2016) Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell 167:897–914. https://doi.org/10.1016/j.cell.2016.10.021
CAS
Article
PubMed
Google Scholar
Marques BL, Carvalho GA, Freitas EMM et al (2019) The role of neurogenesis in neurorepair after ischemic stroke. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2018.12.003
Article
PubMed
Google Scholar
Dillen Y, Kemps H, Gervois P et al (2019) Adult neurogenesis in the subventricular zone and its regulation after ischemic stroke: implications for therapeutic approaches. Transl Stroke Res 145:573. https://doi.org/10.1007/s12975-019-00717-8
CAS
Article
Google Scholar
Li G, Fang L, Fernández G, Pleasure SJ (2013) The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. Neuron 78:658–672. https://doi.org/10.1016/j.neuron.2013.03.019
CAS
Article
PubMed
PubMed Central
Google Scholar
Almeida AS, Vieira HLA (2017) Role of cell metabolism and mitochondrial function during adult neurogenesis. Neurochem Res 42:1787–1794. https://doi.org/10.1007/s11064-016-2150-3
CAS
Article
PubMed
Google Scholar
Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148. https://doi.org/10.1038/191144a0
CAS
Article
PubMed
Google Scholar
Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405:1–9. https://doi.org/10.1042/BJ20070389
CAS
Article
PubMed
Google Scholar
Schurr A (2018) Glycolysis paradigm shift dictates a reevaluation of glucose and oxygen metabolic rates of activated neural tissue. Front Neurosci 12:700. https://doi.org/10.3389/fnins.2018.00700
Article
PubMed
PubMed Central
Google Scholar
Tong X, Zhao F, Thompson CB (2009) The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev 19:32–37. https://doi.org/10.1016/j.gde.2009.01.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Van Wyngene L, Vandewalle J, Libert C (2018) Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last? EMBO Mol Med 10:1. https://doi.org/10.15252/emmm.201708712
CAS
Article
Google Scholar
Israelsen WJ, van der Heiden MG (2015) Pyruvate kinase: function, regulation and role in cancer. Semin Cell Dev Biol 43:43–51. https://doi.org/10.1016/j.semcdb.2015.08.004
CAS
Article
PubMed
PubMed Central
Google Scholar
van der Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. https://doi.org/10.1126/science.1160809
CAS
Article
Google Scholar
Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277:30409–30412. https://doi.org/10.1074/jbc.R200006200
CAS
Article
PubMed
Google Scholar
Morris AAM (2005) Cerebral ketone body metabolism. J Inherit Metab Dis 28:109–121. https://doi.org/10.1007/s10545-005-5518-0
CAS
Article
PubMed
Google Scholar
Le Foll C (2019) Hypothalamic fatty acids and ketone bodies sensing and role of FAT/CD36 in the regulation of food intake. Front Physiol 10:1036. https://doi.org/10.3389/fphys.2019.01036
Article
PubMed
PubMed Central
Google Scholar
Le Foll C, Levin BE (2016) Fatty acid-induced astrocyte ketone production and the control of food intake. Am J Physiol Regul Integr Comp Physiol 310:R1186–R1192. https://doi.org/10.1152/ajpregu.00113.2016
Article
PubMed
PubMed Central
Google Scholar
Mattson MP, Moehl K, Ghena N et al (2018) Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci 19:63–80. https://doi.org/10.1038/nrn.2017.156
CAS
Article
PubMed
PubMed Central
Google Scholar
Murray AJ, Knight NS, Cole MA et al (2016) Novel ketone diet enhances physical and cognitive performance. FASEB J 30:4021–4032. https://doi.org/10.1096/fj.201600773R
CAS
Article
PubMed
PubMed Central
Google Scholar
Hernandez AR, Hernandez CM, Campos K et al (2018) A ketogenic diet improves cognition and has biochemical effects in prefrontal cortex that are dissociable from hippocampus. Front Aging Neurosci 10:391. https://doi.org/10.3389/fnagi.2018.00391
CAS
Article
PubMed
PubMed Central
Google Scholar
Sleiman SF, Henry J, Al-Haddad R et al (2016) Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. Elife 5:560. https://doi.org/10.7554/eLife.15092
Article
Google Scholar
Carneiro L, Geller S, Hébert A et al (2016) Hypothalamic sensing of ketone bodies after prolonged cerebral exposure leads to metabolic control dysregulation. Sci Rep 6:34909. https://doi.org/10.1038/srep34909
CAS
Article
PubMed
PubMed Central
Google Scholar
Dringen R, Gebhardt R, Hamprecht B (1993) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 623:208–214. https://doi.org/10.1016/0006-8993(93)91429-v
CAS
Article
PubMed
Google Scholar
Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629. https://doi.org/10.1073/pnas.91.22.10625
CAS
Article
PubMed
Google Scholar
Brown AM, Baltan Tekkök S, Ransom BR (2004) Energy transfer from astrocytes to axons: the role of CNS glycogen. Neurochem Int 45:529–536. https://doi.org/10.1016/j.neuint.2003.11.005
CAS
Article
PubMed
Google Scholar
Wyss MT, Jolivet R, Buck A et al (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31:7477–7485. https://doi.org/10.1523/JNEUROSCI.0415-11.2011
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang J, Ruchti E, Petit J-M et al (2014) Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc Natl Acad Sci 111:12228–12233. https://doi.org/10.1073/pnas.1322912111
CAS
Article
PubMed
Google Scholar
Herrero-Mendez A, Almeida A, Fernández E et al (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–752. https://doi.org/10.1038/ncb1881
CAS
Article
PubMed
Google Scholar
Bouzier-Sore A-K, Voisin P, Canioni P et al (2003) Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. J Cereb Blood Flow Metab 23:1298–1306. https://doi.org/10.1097/01.WCB.0000091761.61714.25
CAS
Article
PubMed
Google Scholar
McKenna MC, Hopkins IB, Carey A (2001) Alpha-cyano-4-hydroxycinnamate decreases both glucose and lactate metabolism in neurons and astrocytes: implications for lactate as an energy substrate for neurons. J Neurosci Res 66:747–754. https://doi.org/10.1002/jnr.10084
CAS
Article
PubMed
Google Scholar
Vilchez D, Ros S, Cifuentes D et al (2007) Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci 10:1407–1413. https://doi.org/10.1038/nn1998
CAS
Article
PubMed
Google Scholar
Prigione A, Fauler B, Lurz R et al (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28:721–733. https://doi.org/10.1002/stem.404
CAS
Article
PubMed
Google Scholar
Folmes CDL, Nelson TJ, Martinez-Fernandez A et al (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14:264–271. https://doi.org/10.1016/j.cmet.2011.06.011
CAS
Article
PubMed
PubMed Central
Google Scholar
Kondoh H, Lleonart ME, Nakashima Y et al (2007) A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal 9:293–299. https://doi.org/10.1089/ars.2006.1467
CAS
Article
PubMed
Google Scholar
Zhang J, Khvorostov I, Hong JS et al (2011) UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 30:4860–4873. https://doi.org/10.1038/emboj.2011.401
CAS
Article
PubMed
PubMed Central
Google Scholar
Sánchez-Aragó M, García-Bermúdez J, Martínez-Reyes I et al (2013) Degradation of IF1 controls energy metabolism during osteogenic differentiation of stem cells. EMBO Rep 14:638–644. https://doi.org/10.1038/embor.2013.72
CAS
Article
PubMed
PubMed Central
Google Scholar
Takubo K, Nagamatsu G, Kobayashi CI et al (2013) Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12:49–61. https://doi.org/10.1016/j.stem.2012.10.011
CAS
Article
PubMed
PubMed Central
Google Scholar
Flores A, Schell J, Krall AS et al (2017) Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat Cell Biol 19:1017–1026. https://doi.org/10.1038/ncb3575
CAS
Article
PubMed
Google Scholar
Maryanovich M, Zaltsman Y, Ruggiero A et al (2015) An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nat Commun 6:7901–7909. https://doi.org/10.1038/ncomms8901
CAS
Article
PubMed
Google Scholar
Codega P, Silva-Vargas V, Paul A et al (2014) Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 82:545–559. https://doi.org/10.1016/j.neuron.2014.02.039
CAS
Article
PubMed
PubMed Central
Google Scholar
Shin J, Berg DA, Zhu Y et al (2015) Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17:360–372. https://doi.org/10.1016/j.stem.2015.07.013
CAS
Article
PubMed
Google Scholar
Stoll EA, Makin R, Sweet IR et al (2015) Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity. Stem Cells 33:2306–2319. https://doi.org/10.1002/stem.2042
CAS
Article
PubMed
PubMed Central
Google Scholar
Hamilton LK, Dufresne M, Joppé SE et al (2015) Aberrant lipid metabolism in the forebrain niche suppresses adult neural stem cell proliferation in an animal model of Alzheimer's disease. Cell Stem Cell 17:397–411. https://doi.org/10.1016/j.stem.2015.08.001
CAS
Article
PubMed
Google Scholar
Llorens-Bobadilla E, Zhao S, Baser A et al (2015) Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17:329–340. https://doi.org/10.1016/j.stem.2015.07.002
CAS
Article
PubMed
Google Scholar
Hamilton LK, Fernandes KJL (2018) Neural stem cells and adult brain fatty acid metabolism: lessons from the 3xTg model of Alzheimer's disease. Biol Cell 110:6–25. https://doi.org/10.1111/boc.201700037
CAS
Article
PubMed
Google Scholar
Beckervordersandforth R, Ebert B, Schäffner I et al (2017) Role of mitochondrial metabolism in the control of early lineage progression and aging phenotypes in adult hippocampal neurogenesis. Neuron 93:560–573.e6. https://doi.org/10.1016/j.neuron.2016.12.017
CAS
Article
PubMed
PubMed Central
Google Scholar
Cabello-Rivera D, Sarmiento-Soto H, López-Barneo J, Muñoz-Cabello AM (2019) Mitochondrial complex I function is essential for neural stem/progenitor cells proliferation and differentiation. Front Neurosci 13:664. https://doi.org/10.3389/fnins.2019.00664
Article
PubMed
PubMed Central
Google Scholar
Zheng X, Boyer L, Jin M et al (2016) Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Elife 5:859. https://doi.org/10.7554/eLife.13374
CAS
Article
Google Scholar
Khacho M, Slack RS (2017) Mitochondrial activity in the regulation of stem cell self-renewal and differentiation. Curr Opin Cell Biol 49:1–8. https://doi.org/10.1016/j.ceb.2017.11.003
CAS
Article
PubMed
Google Scholar
Calvo-Garrido J, Maffezzini C, Schober FA et al (2019) SQSTM1/p62-directed metabolic reprogramming is essential for normal neurodifferentiation. Stem Cell Rep 12:696–711. https://doi.org/10.1016/j.stemcr.2019.01.023
CAS
Article
Google Scholar
Wellen KE, Hatzivassiliou G, Sachdeva UM et al (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080. https://doi.org/10.1126/science.1164097
CAS
Article
PubMed
PubMed Central
Google Scholar
Mlody B, Lorenz C, Inak G, Prigione A (2016) Energy metabolism in neuronal/glial induction and in iPSC models of brain disorders. Semin Cell Dev Biol 52:102–109. https://doi.org/10.1016/j.semcdb.2016.02.018
CAS
Article
PubMed
Google Scholar
Yao B, Christian KM, He C et al (2016) Epigenetic mechanisms in neurogenesis. Nat Rev Neurosci 17:537–549. https://doi.org/10.1038/nrn.2016.70
CAS
Article
PubMed
PubMed Central
Google Scholar
Khacho M, Harris R, Slack RS (2019) Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat Rev Neurosci 20:34–48. https://doi.org/10.1038/s41583-018-0091-3
CAS
Article
PubMed
Google Scholar
Knobloch M, Braun SMG, Zurkirchen L et al (2013) Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493:226–230. https://doi.org/10.1038/nature11689
CAS
Article
PubMed
Google Scholar
Agostini M, Romeo F, Inoue S et al (2016) Metabolic reprogramming during neuronal differentiation. Cell Death Differ 23:1502–1514. https://doi.org/10.1038/cdd.2016.36
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhou W, Zhao T, Du J et al (2019) TIGAR promotes neural stem cell differentiation through acetyl-CoA-mediated histone acetylation. Cell Death Dis 10:198. https://doi.org/10.1038/s41419-019-1434-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Valvona CJ, Fillmore HL, Nunn PB, Pilkington GJ (2016) The Regulation and function of lactate dehydrogenase a: therapeutic potential in brain tumor. Brain Pathol 26:3–17. https://doi.org/10.1111/bpa.12299
CAS
Article
PubMed
Google Scholar
Lamark T, Svenning S, Johansen T (2017) Regulation of selective autophagy: the p62/SQSTM1 paradigm. Essays Biochem 61:609–624. https://doi.org/10.1042/EBC20170035
Article
PubMed
Google Scholar
Haack TB, Ignatius E, Calvo-Garrido J et al (2016) Absence of the autophagy adaptor SQSTM1/p62 causes childhood-onset neurodegeneration with ataxia, dystonia, and gaze palsy. Am J Hum Genet 99:735–743. https://doi.org/10.1016/j.ajhg.2016.06.026
CAS
Article
PubMed
PubMed Central
Google Scholar
Muto V, Flex E, Kupchinsky Z et al (2018) Biallelic SQSTM1 mutations in early-onset, variably progressive neurodegeneration. Neurology 91:e319–e330. https://doi.org/10.1212/WNL.0000000000005869
CAS
Article
PubMed
PubMed Central
Google Scholar
Falk A, Falk A, Koch P et al (2012) Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS ONE 7:e29597. https://doi.org/10.1371/journal.pone.0029597
CAS
Article
PubMed
PubMed Central
Google Scholar
Jiang T, Harder B, Rojo de la Vega M et al (2015) p62 links autophagy and Nrf2 signaling. Free Radic Biol Med 88:199–204. https://doi.org/10.1016/j.freeradbiomed.2015.06.014
CAS
Article
PubMed
PubMed Central
Google Scholar
Rantanen K, Pursiheimo JP, Hogel H et al (2013) p62/SQSTM1 regulates cellular oxygen sensing by attenuating PHD3 activity through aggregate sequestration and enhanced degradation. J Cell Sci 126:1144–1154. https://doi.org/10.1242/jcs.115667
CAS
Article
PubMed
Google Scholar
Carroll B, Otten EG, Manni D et al (2018) Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis. Nat Commun 9:256. https://doi.org/10.1038/s41467-017-02746-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Copple IM, Lister A, Obeng AD et al (2010) Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway. J Biol Chem 285:16782–16788. https://doi.org/10.1074/jbc.M109.096545
CAS
Article
PubMed
PubMed Central
Google Scholar
Fan W, Tang Z, Chen D et al (2010) Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy 6:614–621. https://doi.org/10.4161/auto.6.5.12189
CAS
Article
PubMed
PubMed Central
Google Scholar
Jain A, Lamark T, Lamark T et al (2010) p62/SQSTM1Is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285:22576–22591. https://doi.org/10.1074/jbc.M110.118976
CAS
Article
PubMed
PubMed Central
Google Scholar
Komatsu M, Komatsu M, Kurokawa H et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–223. https://doi.org/10.1038/ncb2021
CAS
Article
PubMed
Google Scholar
Lau A, Wang XJ, Zhao F et al (2010) A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 30:3275–3285. https://doi.org/10.1128/MCB.00248-10
CAS
Article
PubMed
PubMed Central
Google Scholar
Durán A, Serrano M, Leitges M et al (2004) The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell 6:303–309. https://doi.org/10.1016/s1534-5807(03)00403-9
Article
PubMed
Google Scholar
Joung I, Kim HJ, Kwon YK (2005) p62 modulates Akt activity via association with PKCζ in neuronal survival and differentiation. Biochem Biophys Res Commun 334:654–660. https://doi.org/10.1016/j.bbrc.2005.06.138
CAS
Article
PubMed
Google Scholar
Ramesh Babu J, Lamar Seibenhener M, Peng J et al (2008) Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J Neurochem 106:107–120. https://doi.org/10.1111/j.1471-4159.2008.05340.x
CAS
Article
PubMed
Google Scholar
Kwon J, Han E, Bui C-B et al (2012) Assurance of mitochondrial integrity and mammalian longevity by the p62–Keap1–Nrf2–Nqo1 cascade. EMBO Rep 13:150–156. https://doi.org/10.1038/embor.2011.246
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang C, Chen S, Yeo S et al (2016) Elevated p62/SQSTM1 determines the fate of autophagy-deficient neural stem cells by increasing superoxide. J Cell Biol 212:545–560. https://doi.org/10.1083/jcb.201507023
CAS
Article
PubMed
PubMed Central
Google Scholar
Kim D-Y, Rhee I, Paik J (2014) Metabolic circuits in neural stem cells. Cell Mol Life Sci 71:4221–4241. https://doi.org/10.1007/s00018-014-1686-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Mootha VK, Chinnery PF (2018) Oxygen in mitochondrial disease: can there be too much of a good thing? J Inherit Metab Dis 41:761–763. https://doi.org/10.1007/s10545-018-0210-3
CAS
Article
PubMed
Google Scholar
Jastroch M, Divakaruni AS, Mookerjee S et al (2010) Mitochondrial proton and electron leaks. Essays Biochem 47:53–67. https://doi.org/10.1042/bse0470053
CAS
Article
PubMed
PubMed Central
Google Scholar
Le Belle JE, Orozco NM, Paucar AA et al (2011) Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8:59–71. https://doi.org/10.1016/j.stem.2010.11.028
CAS
Article
PubMed
PubMed Central
Google Scholar
Bigarella CL, Liang R, Ghaffari S (2014) Stem cells and the impact of ROS signaling. Development 141:4206–4218. https://doi.org/10.1242/dev.107086
CAS
Article
PubMed
PubMed Central
Google Scholar
Panieri E, Santoro MM (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 7:e2253–e2253. https://doi.org/10.1038/cddis.2016.105
CAS
Article
PubMed
PubMed Central
Google Scholar
Murphy MP, Holmgren A, Larsson N-G et al (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13:361–366. https://doi.org/10.1016/j.cmet.2011.03.010
CAS
Article
PubMed
PubMed Central
Google Scholar
Kauppila TES, Kauppila JHK, Larsson N-G (2017) Mammalian mitochondria and aging: an update. Cell Metab 25:57–71. https://doi.org/10.1016/j.cmet.2016.09.017
CAS
Article
PubMed
Google Scholar
Khacho M, Clark A, Svoboda DS et al (2016) Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19:232–247. https://doi.org/10.1016/j.stem.2016.04.015
CAS
Article
PubMed
Google Scholar
Liang R, Ghaffari S (2014) Stem cells, redox signaling, and stem cell aging. Antioxid Redox Signal 20:1902–1916. https://doi.org/10.1089/ars.2013.5300
CAS
Article
PubMed
PubMed Central
Google Scholar
Shaban S, El-Husseny MWA, Abushouk AI et al (2017) Effects of antioxidant supplements on the survival and differentiation of stem cells. Oxid Med Cell Longev 2017:5032102–5032116. https://doi.org/10.1155/2017/5032102
CAS
Article
PubMed
PubMed Central
Google Scholar
Kärkkäinen V, Pomeshchik Y, Savchenko E et al (2014) Nrf2 regulates neurogenesis and protects neural progenitor cells against Aβ toxicity. Stem Cells 32:1904–1916. https://doi.org/10.1002/stem.1666
CAS
Article
PubMed
Google Scholar
Yoneyama M, Kawada K, Gotoh Y et al (2010) Endogenous reactive oxygen species are essential for proliferation of neural stem/progenitor cells. Neurochem Int 56:740–746. https://doi.org/10.1016/j.neuint.2009.11.018
CAS
Article
PubMed
Google Scholar
Corenblum MJ, Ray S, Remley QW et al (2016) Reduced Nrf2 expression mediates the decline in neural stem cell function during a critical middle-age period. Aging Cell 15:725–736. https://doi.org/10.1111/acel.12482
CAS
Article
PubMed
PubMed Central
Google Scholar
Ray S, Corenblum MJ, Anandhan A et al (2018) A role for Nrf2 expression in defining the aging of hippocampal neural stem cells. Cell Transplant 27:589–606. https://doi.org/10.1177/0963689718774030
CAS
Article
PubMed
PubMed Central
Google Scholar
Holmström KM, Baird L, Zhang Y et al (2013) Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol Open 2:761–770. https://doi.org/10.1242/bio.20134853
CAS
Article
PubMed
PubMed Central
Google Scholar
Kalamakis G, Brüne D, Ravichandran S et al (2019) Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. Cell 176:1407–1419.e14. https://doi.org/10.1016/j.cell.2019.01.040
CAS
Article
PubMed
Google Scholar
Adusumilli VS, Walker TL, Overall RW et al (2019) Redox potential defines functional states of adult hippocampal stem cells. bioRxiv 7:606186. https://doi.org/10.1101/606186
Article
Google Scholar
Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 90:4304–4308. https://doi.org/10.1073/pnas.90.9.4304
CAS
Article
PubMed
Google Scholar
Maxwell PH, Pugh CW, Ratcliffe PJ (1993) Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci USA 90:2423–2427. https://doi.org/10.1073/pnas.90.6.2423
CAS
Article
PubMed
Google Scholar
Carmeliet P, Dor Y, Herbert JM et al (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490. https://doi.org/10.1038/28867
CAS
Article
PubMed
Google Scholar
Schödel J, Ratcliffe PJ (2019) Mechanisms of hypoxia signalling: new implications for nephrology. Nat Rev Nephrol 15:641–659. https://doi.org/10.1038/s41581-019-0182-z
Article
PubMed
Google Scholar
Francis KR, Wei L (2010) Human embryonic stem cell neural differentiation and enhanced cell survival promoted by hypoxic preconditioning. Cell Death Dis 1:e22–e22. https://doi.org/10.1038/cddis.2009.22
CAS
Article
PubMed
PubMed Central
Google Scholar
Sun C, Fu J, Qu Z et al (2019) Chronic mild hypoxia promotes hippocampal neurogenesis involving Notch1 signaling in epileptic rats. Brain Res 1714:88–98. https://doi.org/10.1016/j.brainres.2019.02.011
CAS
Article
PubMed
Google Scholar
Tomita S, Ueno M, Sakamoto M et al (2003) Defective brain development in mice lacking the Hif-1alpha gene in neural cells. Mol Cell Biol 23:6739–6749. https://doi.org/10.1128/mcb.23.19.6739-6749.2003
CAS
Article
PubMed
PubMed Central
Google Scholar
Mazumdar J, O'Brien WT, Johnson RS et al (2010) O2 regulates stem cells through Wnt/β-catenin signalling. Nat Cell Biol 12:1007–1013. https://doi.org/10.1038/ncb2102
CAS
Article
PubMed
PubMed Central
Google Scholar
Candelario KM, Shuttleworth CW, Cunningham LA (2013) Neural stem/progenitor cells display a low requirement for oxidative metabolism independent of hypoxia inducible factor-1alpha expression. J Neurochem 125:420–429. https://doi.org/10.1111/jnc.12204
CAS
Article
PubMed
PubMed Central
Google Scholar
Edmond J (1992) Energy metabolism in developing brain cells. Can J Physiol Pharmacol 70(Suppl):S118–S129. https://doi.org/10.1139/y92-253
CAS
Article
PubMed
Google Scholar
Knobloch M (2017) The role of lipid metabolism for neural stem cell regulation. Brain Plast 3:61–71. https://doi.org/10.3233/BPL-160035
Article
PubMed
PubMed Central
Google Scholar
Edmond J (2001) Essential polyunsaturated fatty acids and the barrier to the brain: the components of a model for transport. J Mol Neurosci 16:181–193. https://doi.org/10.1385/JMN:16:2-3:181(discussion 215–21)
CAS
Article
PubMed
Google Scholar
Nguyen LN, Ma D, Shui G et al (2014) Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509:503–506. https://doi.org/10.1038/nature13241
CAS
Article
PubMed
Google Scholar
Ben-Zvi A, Lacoste B, Kur E et al (2014) Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509:507–511. https://doi.org/10.1038/nature13324
CAS
Article
PubMed
PubMed Central
Google Scholar
Betsholtz C (2015) Lipid transport and human brain development. Nat Genet 47:699–701. https://doi.org/10.1038/ng.3348
CAS
Article
PubMed
Google Scholar
Schönfeld P, Reiser G (2013) Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cereb Blood Flow Metab 33:1493–1499. https://doi.org/10.1038/jcbfm.2013.128
CAS
Article
PubMed
PubMed Central
Google Scholar
Kurtz A, Zimmer A, Schnütgen F et al (1994) The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development 120:2637–2649
CAS
PubMed
Google Scholar
Watanabe A, Toyota T, Owada Y et al (2007) Fabp7 maps to a quantitative trait locus for a schizophrenia endophenotype. PLoS Biol 5:e297. https://doi.org/10.1371/journal.pbio.0050297
CAS
Article
PubMed
PubMed Central
Google Scholar
Matsumata M, Sakayori N, Maekawa M et al (2012) The effects of Fabp7 and Fabp5 on postnatal hippocampal neurogenesis in the mouse. Stem Cells 30:1532–1543. https://doi.org/10.1002/stem.1124
CAS
Article
PubMed
Google Scholar
Bailey AP, Koster G, Guillermier C et al (2015) Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell 163:340–353. https://doi.org/10.1016/j.cell.2015.09.020
CAS
Article
PubMed
PubMed Central
Google Scholar
Facucho-Oliveira JM, St John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev Rep 5:140–158. https://doi.org/10.1007/s12015-009-9058-0
CAS
Article
PubMed
Google Scholar
O'Brien LC, Keeney PM, Bennett JP (2015) Differentiation of human neural stem cells into motor neurons stimulates mitochondrial biogenesis and decreases glycolytic flux. Stem Cells Dev 24:1984–1994. https://doi.org/10.1089/scd.2015.0076
CAS
Article
PubMed
PubMed Central
Google Scholar
Vayssière JL, Cordeau-Lossouarn L, Larcher JC et al (1992) Participation of the mitochondrial genome in the differentiation of neuroblastoma cells. Vitro Cell Dev Biol 28A:763–772. https://doi.org/10.1007/bf02631065
Article
Google Scholar
Chen C-T, Hsu S-H, Wei YH (2010) Upregulation of mitochondrial function and antioxidant defense in the differentiation of stem cells. Biochim Biophys Acta 1800:257–263. https://doi.org/10.1016/j.bbagen.2009.09.001
CAS
Article
PubMed
Google Scholar
Rastogi A, Joshi P, Contreras E, Gama V (2019) Remodeling of mitochondrial morphology and function: an emerging hallmark of cellular reprogramming. Cell Stress 3:181–194. https://doi.org/10.15698/cst2019.06.189
Article
PubMed
PubMed Central
Google Scholar
Wrann CD, White JP, Salogiannnis J et al (2013) Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab 18:649–659. https://doi.org/10.1016/j.cmet.2013.09.008
CAS
Article
PubMed
PubMed Central
Google Scholar
Duzel E, van Praag H, Sendtner M (2016) Can physical exercise in old age improve memory and hippocampal function? Brain 139:662–673. https://doi.org/10.1093/brain/awv407
Article
PubMed
PubMed Central
Google Scholar
Karlsson L, González-Alvarado MN, Motalleb R et al (2019) Constitutive PGC-1α overexpression in skeletal muscle does not protect from age-dependent decline in neurogenesis. Sci Rep 9:12320. https://doi.org/10.1038/s41598-019-48795-w
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen H, Chan DC (2006) Critical dependence of neurons on mitochondrial dynamics. Curr Opin Cell Biol 18:453–459. https://doi.org/10.1016/j.ceb.2006.06.004
CAS
Article
PubMed
Google Scholar
Homem CCF, Steinmann V, Burkard TR et al (2014) Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. Cell 158:874–888. https://doi.org/10.1016/j.cell.2014.06.024
CAS
Article
PubMed
Google Scholar
Steib K, Schäffner I, Jagasia R et al (2014) Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J Neurosci 34:6624–6633. https://doi.org/10.1523/JNEUROSCI.4972-13.2014
CAS
Article
PubMed
PubMed Central
Google Scholar
Chan DC (2019) Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol 15:2129252597. https://doi.org/10.1146/annurev-pathmechdis-012419-032711
CAS
Article
Google Scholar
Guan J-L, Simon AK, Prescott M et al (2013) Autophagy in stem cells. Autophagy 9:830–849. https://doi.org/10.4161/auto.24132
CAS
Article
PubMed
PubMed Central
Google Scholar
Kaur J, Debnath J (2015) Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol 16:461–472. https://doi.org/10.1038/nrm4024
CAS
Article
PubMed
Google Scholar
Boya P, Codogno P, Rodriguez-Muela N (2018) Autophagy in stem cells: repair, remodelling and metabolic reprogramming. Development 145:dev146506. https://doi.org/10.1242/dev.146506
CAS
Article
PubMed
Google Scholar
Vázquez P, Arroba AI, Cecconi F et al (2012) Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells. Autophagy 8:187–199. https://doi.org/10.4161/auto.8.2.18535
CAS
Article
PubMed
Google Scholar
Lv X, Jiang H, Li B et al (2014) The crucial role of Atg5 in cortical neurogenesis during early brain development. Sci Rep 4:6010. https://doi.org/10.1038/srep06010
CAS
Article
PubMed
PubMed Central
Google Scholar
Xi Y, Dhaliwal JS, Ceizar M et al (2016) Knockout of Atg5 delays the maturation and reduces the survival of adult-generated neurons in the hippocampus. Cell Death Dis 7:e2127–e2127. https://doi.org/10.1038/cddis.2015.406
CAS
Article
PubMed
PubMed Central
Google Scholar
Wu X, Fleming A, Ricketts T et al (2016) Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun 7:10533. https://doi.org/10.1038/ncomms10533
CAS
Article
PubMed
PubMed Central
Google Scholar
Trifunovic A, Wredenberg A, Falkenberg M et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423. https://doi.org/10.1038/nature02517
CAS
Article
PubMed
Google Scholar
Kujoth GC, Hiona A, Pugh TD et al (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–484. https://doi.org/10.1126/science.1112125
CAS
Article
PubMed
Google Scholar
Bratic A, Larsson N-G (2013) The role of mitochondria in aging. J Clin Investig 123:951–957. https://doi.org/10.1172/JCI64125
CAS
Article
PubMed
Google Scholar
Ahlqvist KJ, Hämäläinen RH, Yatsuga S et al (2012) Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice. Cell Metab 15:100–109. https://doi.org/10.1016/j.cmet.2011.11.012
CAS
Article
PubMed
Google Scholar
Theurey P, Pizzo P (2018) The aging mitochondria. Genes (Basel) 9:22. https://doi.org/10.3390/genes9010022
CAS
Article
Google Scholar
Gomes AP, Price NL, Ling AJY et al (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155:1624–1638. https://doi.org/10.1016/j.cell.2013.11.037
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang H, Ryu D, Wu Y et al (2016) NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352:1436–1443. https://doi.org/10.1126/science.aaf2693
CAS
Article
PubMed
Google Scholar
Jain IH, Zazzeron L, Goli R et al (2016) Hypoxia as a therapy for mitochondrial disease. Science 352:54–61. https://doi.org/10.1126/science.aad9642
CAS
Article
PubMed
PubMed Central
Google Scholar
Ast T, Meisel JD, Patra S et al (2019) Hypoxia rescues frataxin loss by restoring iron sulfur cluster biogenesis. Cell 177:1507–1521.e16. https://doi.org/10.1016/j.cell.2019.03.045
CAS
Article
PubMed
PubMed Central
Google Scholar
Ferrari M, Jain IH, Goldberger O et al (2017) Hypoxia treatment reverses neurodegenerative disease in a mouse model of Leigh syndrome. Proc Natl Acad Sci 114:E4241–E4250. https://doi.org/10.1073/pnas.1621511114
CAS
Article
PubMed
Google Scholar
Freyer C, Larsson N-G (2007) Is energy deficiency good in moderation? Cell 131:448–450. https://doi.org/10.1016/j.cell.2007.10.027
CAS
Article
PubMed
Google Scholar
Schafer ST, Paquola ACM, Stern S et al (2019) Pathological priming causes developmental gene network heterochronicity in autistic subject-derived neurons. Nat Neurosci 22:243–255. https://doi.org/10.1038/s41593-018-0295-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Hattiangady B, Rao MS, Shetty AK (2004) Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus. Neurobiol Dis 17:473–490. https://doi.org/10.1016/j.nbd.2004.08.008
CAS
Article
PubMed
Google Scholar
Hattiangady B, Shetty AK (2010) Decreased neuronal differentiation of newly generated cells underlies reduced hippocampal neurogenesis in chronic temporal lobe epilepsy. Hippocampus 20:97–112. https://doi.org/10.1002/hipo.20594
Article
PubMed
PubMed Central
Google Scholar
Perez Ortiz JM, Swerdlow RH (2019) Mitochondrial dysfunction in Alzheimer's disease: role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol 176:3489–3507. https://doi.org/10.1111/bph.14585
CAS
Article
PubMed
Google Scholar
Stangl D, Thuret S (2009) Impact of diet on adult hippocampal neurogenesis. Genes Nutr 4:271–282. https://doi.org/10.1007/s12263-009-0134-5
CAS
Article
PubMed
PubMed Central
Google Scholar