Skip to main content

Advertisement

Log in

Microtubule affinity-regulating kinases are potential druggable targets for Alzheimer’s disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects normal functions of the brain. Currently, AD is one of the leading causes of death in developed countries and the only one of the top ten diseases without a means to prevent, cure, or significantly slow down its progression. Therefore, newer therapeutic concepts are urgently needed to improve survival and the quality of life of AD patients. Microtubule affinity-regulating kinases (MARKs) regulate tau-microtubule binding and play a crucial role in neurons. However, their role in hyperphosphorylation of tau makes them potential druggable target for AD therapy. Despite the relevance of MARKs in AD pathogenesis, only a few small molecules are known to have anti-MARK activity and not much has been done to progress these compounds into therapeutic candidates. But given the diverse role of MARKs, the specificity of novel inhibitors is imperative for their successful translation from bench to bedside. In this regard, a recent co-crystal structure of MARK4 in association with a pyrazolopyrimidine-based inhibitor offers a potential scaffold for the development of more specific MARK inhibitors. In this manuscript, we review the biological role of MARKs in health and disease, and draw attention to the largely unexplored area of MARK inhibitors for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tayeb HO, Yang HD, Price BH, Tarazi FI (2012) Pharmacotherapies for Alzheimer’s disease: beyond cholinesterase inhibitors. Pharmacol Ther 134:8–25. doi:10.1016/j.pharmthera.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  2. Braak H, Del Tredici K (2016) Potential pathways of abnormal tau and α-synuclein dissemination in sporadic Alzheimer’s and Parkinson’s diseases. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a023630

    PubMed  Google Scholar 

  3. Minati L, Edginton T, Grazia Bruzzone M, Giaccone G (2009) Reviews: Current concepts in Alzheimer’s disease: a multidisciplinary review. Am J Alzheimers Dis Other Dement 24:95–121. doi:10.1177/1533317508328602

    Article  Google Scholar 

  4. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Stone J, Casadesus G, Gustaw-Rothenberg K et al (2011) Frontiers in Alzheimer’s disease therapeutics. Ther Adv Chronic Dis 2:9–23

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang W-Y, Tan M-S, Yu J-T, Tan L (2015) Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 3:136. doi:10.3978/j.issn.2305-5839.2015.03.49

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kahn OI, Baas PW (2016) Microtubules and growth cones: motors drive the turn. Trends Neurosci 39:433–440. doi:10.1016/j.tins.2016.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sarma T, Koutsouris A, Yu JZ et al (2015) Activation of microtubule dynamics increases neuronal growth via the nerve growth factor (NGF)- and Gαs-mediated signaling pathways. J Biol Chem 290:10045–10056. doi:10.1074/jbc.M114.630632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Billingsley ML, Kincaid RL (1997) Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 323:577–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Di J, Cohen LS, Corbo CP et al (2016) Abnormal tau induces cognitive impairment through two different mechanisms: synaptic dysfunction and neuronal loss. Sci Rep 6:20833. doi:10.1038/srep20833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mietelska-Porowska A, Wasik U, Goras M et al (2014) Tau protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci 15:4671–4713. doi:10.3390/ijms15034671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Thomas S, Funk K, Wan Y et al (2012) Dual modification of Alzheimer’s disease PHF-tau protein by lysine methylation and ubiquitylation: a mass spectrometry approach. Acta Neuropathol 123:105–117

    Article  CAS  PubMed  Google Scholar 

  13. Martin L, Latypova X, Terro F (2011) Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int 58:458–471. doi:10.1016/j.neuint.2010.12.023

    Article  CAS  PubMed  Google Scholar 

  14. Roder HM, Hutton ML (2007) Microtubule-associated protein tau as a therapeutic target in neurodegenerative disease. Expert Opin Ther Targets 11:435–442. doi:10.1517/14728222.11.4.435

    Article  CAS  PubMed  Google Scholar 

  15. Trinczek B, Brajenovic M, Ebneth A, Drewes G (2004) MARK4 is a novel microtubule-associated proteins/microtubule affinity-regulating kinase that binds to the cellular microtubule network and to centrosomes. J Biol Chem 279:5915–5923. doi:10.1074/jbc.M304528200

    Article  CAS  PubMed  Google Scholar 

  16. Gu GJ, Lund H, Wu D et al (2013) Role of individual MARK isoforms in phosphorylation of tau at Ser262 in Alzheimer’s disease. Neuromol Med 15:458–469. doi:10.1007/s12017-013-8232-3

    Article  CAS  Google Scholar 

  17. Mandelkow E-M, Thies E, Trinczek B et al (2004) MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. J Cell Biol 167:99. doi:10.1083/jcb.200401085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matenia D, Mandelkow E-M (2009) The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem Sci 34:332–342. doi:10.1016/j.tibs.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  19. Naz F, Anjum F, Islam A et al (2013) Microtubule affinity-regulating kinase 4: structure, function, and regulation. Cell Biochem Biophys 67:485–499. doi:10.1007/s12013-013-9550-7

    Article  CAS  PubMed  Google Scholar 

  20. Sun C, Tian L, Nie J et al (2012) Inactivation of MARK4, an AMP-activated protein kinase (AMPK)-related kinase, leads to insulin hypersensitivity and resistance to diet-induced obesity. J Biol Chem 287:38305–38315. doi:10.1074/jbc.M112.388934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yamahashi Y, Saito Y, Murata-Kamiya N, Hatakeyama M (2011) Polarity-regulating kinase partitioning-defective 1b (PAR1b) phosphorylates guanine nucleotide exchange factor H1 (GEF-H1) to regulate RhoA-dependent actin cytoskeletal reorganization. J Biol Chem 286:44576–44584. doi:10.1074/jbc.M111.267021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuhns S, Schmidt KN, Reymann J et al (2013) The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis. J Cell Biol 200:505. doi:10.1083/jcb.201206013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jenardhanan P, Mannu J, Mathur PP (2014) The structural analysis of MARK4 and the exploration of specific inhibitors for the MARK family: a computational approach to obstruct the role of MARK4 in prostate cancer progression. Mol Biosyst 10:1845–1868. doi:10.1039/C3MB70591A

    Article  CAS  PubMed  Google Scholar 

  24. Drewes G, Ebneth A, Preuss U et al (1997) MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell. doi:10.1016/S0092-8674(00)80208-1

    PubMed  Google Scholar 

  25. Moroni RF, De Biasi S, Colapietro P et al (2006) Distinct expression pattern of microtubule-associated protein/microtubule affinity-regulating kinase 4 in differentiated neurons. Neuroscience 143:83–94. doi:10.1016/j.neuroscience.2006.07.052

    Article  CAS  PubMed  Google Scholar 

  26. Magnani I, Novielli C, Fontana L et al (2011) Differential signature of the centrosomal MARK4 isoforms in glioma. Anal. Cell, Pathology, p 34

    Google Scholar 

  27. Kato T, Satoh S, Okabe H et al (2001) Isolation of a novel human gene, MARKL1, homologous to MARK3 and its involvement in hepatocellular carcinogenesis. Neoplasia N Y 3:4–9. doi:10.1038/sj.neo.7900132

    Article  CAS  Google Scholar 

  28. Yu W, Polepalli J, Wagh D et al (2012) A critical role for the PAR-1/MARK-tau axis in mediating the toxic effects of Aβ on synapses and dendritic spines. Hum Mol Genet 21:1384–1390. doi:10.1093/hmg/ddr576

    Article  CAS  PubMed  Google Scholar 

  29. Chen YM, Wang QJ, Hu HS et al (2006) Microtubule affinity-regulating kinase 2 functions downstream of the PAR-3/PAR-6/atypical PKC complex in regulating hippocampal neuronal polarity. Proc Natl Acad Sci USA 103:8534–8539. doi:10.1073/pnas.0509955103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ebneth A, Drewes G, Mandelkow E-M, Mandelkow E (1999) Phosphorylation of MAP2c and MAP4 by MARK kinases leads to the destabilization of microtubules in cells. Cell Motil Cytoskelet 44:209–224. doi:10.1002/(SICI)1097-0169(199911)44:3<209:AID-CM6>3.0.CO;2-4

    Article  CAS  Google Scholar 

  31. Biernat J, Wu Y-Z, Timm T et al (2002) Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol Biol Cell 13:4013–4028. doi:10.1091/mbc.02-03-0046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen YM, Wang QJ, Hu HS et al (2006) Microtubule affinity-regulating kinase 2 functions downstream of the PAR-3/PAR-6/atypical PKC complex in regulating hippocampal neuronal polarity. Proc Natl Acad Sci 103:8534–8539. doi:10.1073/pnas.0509955103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brajenovic M, Joberty G, Küster B et al (2004) Comprehensive proteomic analysis of human Par protein complexes reveals an interconnected protein network. J Biol Chem 279:12804–12811. doi:10.1074/jbc.M312171200

    Article  CAS  PubMed  Google Scholar 

  34. Schmitt-Ulms G, Matenia D, Drewes G, Mandelkow E-M (2009) Interactions of MAP/microtubule affinity regulating kinases with the adaptor complex AP-2 of clathrin-coated vesicles. Cell Motil Cytoskelet 66:661–672. doi:10.1002/cm.20394

    Article  CAS  Google Scholar 

  35. Rovina D, Fontana L, Monti L et al (2014) Microtubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) plays a role in cell cycle progression and cytoskeletal dynamics. Eur J Cell Biol 93:355–365. doi:10.1016/j.ejcb.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  36. Butkevich E, Härtig W, Nikolov M et al (2016) Phosphorylation of FEZ1 by microtubule affinity regulating kinases regulates its function in presynaptic protein trafficking. Sci Rep 6:26965. doi:10.1038/srep26965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lund H, Gustafsson E, Svensson A et al (2014) MARK4 and MARK3 associate with early tau phosphorylation in Alzheimer’s disease granulovacuolar degeneration bodies. Acta Neuropathol Commun 2:22. doi:10.1186/2051-5960-2-22

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dolan PJ, Johnson GV (2010) The role of tau kinases in Alzheimer’s disease. Curr Opin Drug Discov Dev 13:595–603

    CAS  Google Scholar 

  39. Timm T, Li X-Y, Biernat J et al (2003) MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. EMBO J 22:5090–5101. doi:10.1093/emboj/cdg447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lizcano JM, Göransson O, Toth R et al (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23:833–843. doi:10.1038/sj.emboj.7600110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee S, Wang J-W, Yu W, Lu B (2012) Phospho-dependent ubiquitination and degradation of PAR-1 regulates synaptic morphology and tau-mediated Aβ toxicity in Drosophila. Nat Commun 3:1312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Bernard LP, Zhang H (2015) MARK/Par1 kinase is activated downstream of NMDA receptors through a PKA-dependent mechanism. PLoS One 10:e0124816. doi:10.1371/journal.pone.0124816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mazanetz MP, Fischer PM (2007) Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov 6:464–479. doi:10.1038/nrd2111

    Article  CAS  PubMed  Google Scholar 

  44. Fischer D, Mukrasch MD, Biernat J et al (2009) Conformational changes specific for pseudophosphorylation at Serine 262 selectively impair binding of tau to microtubules. Biochemistry (Mosc) 48:10047–10055. doi:10.1021/bi901090m

    Article  CAS  Google Scholar 

  45. Ando K, Maruko-Otake A, Ohtake Y et al (2016) Stabilization of microtubule-unbound tau via tau phosphorylation at Ser262/356 by Par-1/MARK contributes to augmentation of AD-related phosphorylation and Aβ42-induced tau toxicity. PLoS Genet 12:e1005917. doi:10.1371/journal.pgen.1005917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wang J-W, Imai Y, Lu B (2007) Activation of PAR-1 kinase and stimulation of tau phosphorylation by diverse signals require the tumor suppressor protein LKB1. J Neurosci 27:574. doi:10.1523/JNEUROSCI.5094-06.2007

    Article  CAS  PubMed  Google Scholar 

  47. Dequiedt F, Martin M, Von Blume J et al (2006) New role for hPar-1 kinases EMK and C-TAK1 in regulating localization and activity of class IIa histone deacetylases. Mol Cell Biol 26:7086–7102. doi:10.1128/MCB.00231-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Müller J, Ritt DA, Copeland TD, Morrison DK (2003) Functional analysis of C-TAK1 substrate binding and identification of PKP2 as a new C-TAK1 substrate. EMBO J 22:4431. doi:10.1093/emboj/cdg426

    Article  PubMed  PubMed Central  Google Scholar 

  49. Müller J, Ory S, Copeland T et al (2001) C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol Cell 8:983–993. doi:10.1016/S1097-2765(01)00383-5

    Article  PubMed  Google Scholar 

  50. Zhang S-H, Kobayashi R, Graves PR et al (1997) Serine phosphorylation-dependent association of the band 4.1-related protein-tyrosine phosphatase PTPH1 with 14-3-3β protein. J Biol Chem 272:27281–27287. doi:10.1074/jbc.272.43.27281

    Article  CAS  PubMed  Google Scholar 

  51. Mathias RA, Guise AJ, Cristea IM (2015) Post-translational modifications regulate class IIa histone deacetylase (HDAC) function in health and disease. Mol Cell Proteom MCP 14:456–470. doi:10.1074/mcp.O114.046565

    Article  CAS  Google Scholar 

  52. Platholi J, Federman A, Detert JA et al (2014) Regulation of protein phosphatase 1I by Cdc25C-associated kinase 1 (C-TAK1) and PFTAIRE protein kinase. J Biol Chem 289:23893–23900. doi:10.1074/jbc.M114.557744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gong C-X, Singh TJ, Grundke-Iqbal I, Iqbal K (1993) Phosphoprotein phosphatase activities in Alzheimer disease brain. J Neurochem 61:921–927. doi:10.1111/j.1471-4159.1993.tb03603.x

    Article  CAS  PubMed  Google Scholar 

  54. Sontag J-M, Sontag E (2014) Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front Mol Neurosci 7:16. doi:10.3389/fnmol.2014.00016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Schaar BT, Kinoshita K, McConnell SK (2004) Doublecortin microtubule affinity is regulated by a balance of kinase and phosphatase activity at the leading edge of migrating neurons. Neuron 41:203–213. doi:10.1016/S0896-6273(03)00843-2

    Article  CAS  PubMed  Google Scholar 

  56. Gu GJ, Wu D, Lund H et al (2013) Elevated MARK2-dependent phosphorylation of Tau in Alzheimer’s disease. J Alzheimers Dis JAD 33:699–713. doi:10.3233/jad-2012-121357

    CAS  PubMed  Google Scholar 

  57. Beghini A, Magnani I, Roversi G et al (2003) The neural progenitor-restricted isoform of the MARK4 gene in 19q13.2 is upregulated in human gliomas and overexpressed in a subset of glioblastoma cell lines. Oncogene 22:2581–2591

    Article  CAS  PubMed  Google Scholar 

  58. Hubaux R, Thu KL, Vucic EA et al (2015) Microtubule affinity-regulating kinase 2 is associated with DNA damage response and cisplatin resistance in non-small cell lung cancer. Int J Cancer 137:2072–2082. doi:10.1002/ijc.29577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Marshall EA, Ng KW, Anderson C et al (2015) Gene expression analysis of microtubule affinity-regulating kinase 2 in non-small cell lung cancer. Genom Data 6:145–148. doi:10.1016/j.gdata.2015.08.011

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wu Z-Z, Lu H-P, Chao CC-K (2010) Identification and functional analysis of genes which confer resistance to cisplatin in tumor cells. Biochem Pharmacol 80:262–276. doi:10.1016/j.bcp.2010.03.029

    Article  CAS  PubMed  Google Scholar 

  61. Pardo OE, Castellano L, Munro CE et al (2016) miR-515-5p controls cancer cell migration through MARK4 regulation. EMBO Rep 17:570. doi:10.15252/embr.201540970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Arash EH, Shiban A, Song S, Attisano L (2017) MARK4 inhibits Hippo signaling to promote proliferation and migration of breast cancer cells. EMBO Rep. doi:10.15252/embr.201642455

    Google Scholar 

  63. Hurov JB, Watkins JL, Piwnica-Worms H (2004) Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr Biol 14:736–741. doi:10.1016/j.cub.2004.04.007

    Article  CAS  PubMed  Google Scholar 

  64. Lennerz JK, Hurov JB, White LS et al (2010) Loss of Par-1a/MARK3/C-TAK1 kinase leads to reduced adiposity, resistance to hepatic steatosis, and defective gluconeogenesis. Mol Cell Biol 30:5043–5056. doi:10.1128/MCB.01472-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu Z, Gan L, Chen Y et al (2016) Mark4 promotes oxidative stress and inflammation via binding to PPARγ and activating NF-κB pathway in mice adipocytes. Sci Rep 6:21382. doi:10.1038/srep21382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chin JY, Knowles RB, Schneider A et al (2000) Microtubule-affinity regulating kinase (MARK) is tightly associated with neurofibrillary tangles in Alzheimer brain: a fluorescence resonance energy transfer study. J Neuropathol Amp Exp Neurol 59:966. doi:10.1093/jnen/59.11.966

    Article  CAS  Google Scholar 

  67. Mocanu M-M, Nissen A, Eckermann K et al (2008) The potential for β-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous tau in inducible mouse models of tauopathy. J Neurosci 28:737. doi:10.1523/JNEUROSCI.2824-07.2008

    Article  CAS  PubMed  Google Scholar 

  68. Murray MM, Bui T, Smith M et al (2013) Staurosporine is chemoprotective by inducing G(1) arrest in a Chk1- and pRb-dependent manner. Carcinogenesis 34:2244–2252. doi:10.1093/carcin/bgt186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lee BD, Shin J-H, VanKampen J et al (2010) Inhibitors of leucine rich repeat kinase 2 (LRRK2) protect against LRRK2-models of Parkinson’s disease. Nat Med 16:998–1000. doi:10.1038/nm.2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wakita S, Izumi Y, Nakai T et al (2014) Staurosporine induces dopaminergic neurite outgrowth through AMP-activated protein kinase/mammalian target of rapamycin signaling pathway. Neuropharmacology 77:39–48. doi:10.1016/j.neuropharm.2013.09.012

    Article  CAS  PubMed  Google Scholar 

  71. Nabeshima T, Ogawa S, Nishimura H et al (1991) Staurosporine facilitates recovery from the basal forebrain-lesion-induced impairment of learning and deficit of cholinergic neuron in rats. J Pharmacol Exp Ther 257:562

    CAS  PubMed  Google Scholar 

  72. Mainardes R, Gremiao M (2009) Reversed phase HPLC determination of zidovudine in rat plasma and its pharmacokinetics after a single intranasal dose administration. Biol Res 42:357–364

    Article  CAS  PubMed  Google Scholar 

  73. Fuse E, Tanii H, Kurata N et al (1998) Unpredicted clinical pharmacology of UCN-01 caused by specific binding to human α1-acid glycoprotein. Cancer Res 58:3248

    CAS  PubMed  Google Scholar 

  74. Akinaga S, Gomi K, Morimoto M et al (1991) Antitumor activity of UCN-01, a selective inhibitor of protein kinase C, in murine and human tumor models. Cancer Res 51:4888

    CAS  PubMed  Google Scholar 

  75. Gurley L, Umbarger K, Kim J et al (1995) Development of a high-performance liquid chromatographic method for the analysis of staurosporine. J Chromatogr B Biomed Sci Appl 670:125–138

    Article  CAS  Google Scholar 

  76. Monnerat C, Henriksson R, Le Chevalier T et al (2004) Phase I study of PKC412 (N-benzoyl-staurosporine), a novel oral protein kinase C inhibitor, combined with gemcitabine and cisplatin in patients with non-small-cell lung cancer. Ann Oncol 15:316–323. doi:10.1093/annonc/mdh052

    Article  CAS  PubMed  Google Scholar 

  77. Sausville EA, Arbuck SG, Messmann R et al (2001) Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol 19:2319–2333. doi:10.1200/JCO.2001.19.8.2319

    Article  CAS  PubMed  Google Scholar 

  78. Mukthavaram R, Jiang P, Saklecha R et al (2013) High-efficiency liposomal encapsulation of a tyrosine kinase inhibitor leads to improved in vivo toxicity and tumor response profile. Int J Nanomed 8:3991–4006. doi:10.2147/IJN.S51949

    Google Scholar 

  79. Bain J, Plater L, Elliott M et al (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408:297–315. doi:10.1042/BJ20070797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pakavathkumar P, Sharma G, Kaushal V et al (2015) Methylene blue inhibits caspases by oxidation of the catalytic cysteine. Sci Rep 5:13730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wainwright M, Crossley KB (2002) Methylene blue—a therapeutic dye for all seasons? J Chemother 14:431–443. doi:10.1179/joc.2002.14.5.431

    Article  CAS  PubMed  Google Scholar 

  82. Rodriguez P, Zhou W, Barrett DW et al (2016) Multimodal randomized functional MR imaging of the effects of methylene blue in the human brain. Radiology 281:516–526. doi:10.1148/radiol.2016152893

    Article  PubMed  Google Scholar 

  83. Walter-Sack I, Rengelshausen J, Oberwittler H et al (2009) High absolute bioavailability of methylene blue given as an aqueous oral formulation. Eur J Clin Pharmacol 65:179–189. doi:10.1007/s00228-008-0563-x

    Article  CAS  PubMed  Google Scholar 

  84. Schirmer RH, Adler H, Pickhardt M, Mandelkow E (2011) “Lest we forget you—methylene blue…”. Neurobiol Aging 32:2325.e7–2325.e16. doi:10.1016/j.neurobiolaging.2010.12.012

    Article  CAS  Google Scholar 

  85. Sun W, Lee S, Huang X et al (2016) Attenuation of synaptic toxicity and MARK4/PAR1-mediated Tau phosphorylation by methylene blue for Alzheimer’s disease treatment. Sci Rep 6:34784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Congdon EE, Wu JW, Myeku N et al (2012) Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 8:609–622. doi:10.4161/auto.19048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Meijer L, Thunnissen A-M, White A et al (2000) Inhibition of cyclin-dependent kinases, GSK-3β and CK1 by hymenialdisine, a marine sponge constituent. Chem Biol 7:51–63. doi:10.1016/S1074-5521(00)00063-6

    Article  CAS  PubMed  Google Scholar 

  88. Timm T, von Kries JP, Li X et al (2011) Microtubule affinity regulating kinase activity in living neurons was examined by a genetically encoded fluorescence resonance energy transfer/fluorescence lifetime imaging-based biosensor: inhibitors with therapeutic potential. J Biol Chem 286:41711–41722. doi:10.1074/jbc.M111.257865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wan Y, Hur W, Cho CY et al (2004) Synthesis and target identification of hymenialdisine analogs. Chem Biol 11:247–259. doi:10.1016/j.chembiol.2004.01.015

    Article  CAS  PubMed  Google Scholar 

  90. Eldar-Finkelman H, Martinez A (2011) GSK-3 inhibitors: preclinical and clinical focus on CNS. Front Mol Neurosci 4:32. doi:10.3389/fnmol.2011.00032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Saadat I, Higashi H, Obuse C et al (2007) Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447:330–333. doi:10.1038/nature05765

    Article  CAS  PubMed  Google Scholar 

  92. Mishra JP, Cohen D, Zamperone A et al (2015) CagA of Helicobacter pylori interacts with and inhibits the serine-threonine kinase PRK2. Cell Microbiol 17:1670–1682. doi:10.1111/cmi.12464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Neišić D, Miller MC, Quinkert ZT et al (2010) Helicobacter pylori CagA inhibits PAR1/MARK family kinases by mimicking host substrates. Nat Struct Mol Biol 17:130–132. doi:10.1038/nsmb.1705

    Article  CAS  Google Scholar 

  94. Tronel C, Page G, Bodard S et al (2014) The specific PKR inhibitor C16 prevents apoptosis and IL-1β production in an acute excitotoxic rat model with a neuroinflammatory component. Neurochem Int 64:73–83. doi:10.1016/j.neuint.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  95. Ingrand S, Barrier L, Lafay-Chebassier C et al (2007) The oxindole/imidazole derivative C16 reduces in vivo brain PKR activation. FEBS Lett 581:4473–4478. doi:10.1016/j.febslet.2007.08.022

    Article  CAS  PubMed  Google Scholar 

  96. Couturier J, Morel M, Pontcharraud R et al (2010) Interaction of double-stranded RNA-dependent protein kinase (PKR) with the death receptor signaling pathway in amyloid β (Aβ)-treated cells and in APP(SL)PS1 knock-in mice. J Biol Chem 285:1272–1282. doi:10.1074/jbc.M109.041954

    Article  CAS  PubMed  Google Scholar 

  97. Naz F, Shahbaaz M, Khan S et al (2015) PKR-inhibitor binds efficiently with human microtubule affinity-regulating kinase 4. J Mol Graph Model 62:245–252. doi:10.1016/j.jmgm.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  98. Naz F, Shahbaaz M, Bisetty K et al (2015) Designing new kinase inhibitor derivatives as therapeutics against common complex diseases: structural basis of microtubule affinity-regulating kinase 4 (MARK4) inhibition. OMICS J Integr Biol 19:700–711. doi:10.1089/omi.2015.0111

    Article  CAS  Google Scholar 

  99. Naz F, Sami N, Naqvi AT et al (2016) Evaluation of human microtubule affinity-regulating kinase 4 inhibitors: fluorescence binding studies, enzyme, and cell assays. J Biomol Struct Dyn. doi:10.1080/07391102.2016.1249958

    Google Scholar 

  100. Feldman RI, Wu JM, Polokoff MA et al (2005) Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1. J Biol Chem 280:19867–19874. doi:10.1074/jbc.M501367200

    Article  CAS  PubMed  Google Scholar 

  101. Clark K, Plater L, Peggie M, Cohen P (2009) Use of the pharmacological inhibitor bx795 to study the regulation and physiological roles of TBK1 and IκB kinase ϵ: a distinct upstream kinase mediates Ser-172 phosphorylation and activation. J Biol Chem 284:14136–14146. doi:10.1074/jbc.M109.000414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chung S, Suzuki H, Miyamoto T et al (2012) Development of an orally-administrative MELK-targeting inhibitor that suppresses the growth of various types of human cancer. Oncotarget 3:1629–1640

    Article  PubMed  PubMed Central  Google Scholar 

  103. Fraser C, Dawson JC, Dowling R et al (2016) Rapid discovery and structure-activity relationships of pyrazolopyrimidines that potently suppress breast cancer cell growth via SRC kinase inhibition with exceptional selectivity over ABL kinase. J Med Chem 59:4697–4710. doi:10.1021/acs.jmedchem.6b00065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tandon M, Johnson J, Li Z et al (2013) New pyrazolopyrimidine inhibitors of protein kinase D as potent anticancer agents for prostate cancer cells. PLoS One 8:e75601. doi:10.1371/journal.pone.0075601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sloman DL, Noucti N, Altman MD et al (2016) Optimization of microtubule affinity regulating kinase (MARK) inhibitors with improved physical properties. Bioorg Med Chem Lett 26:4362–4366. doi:10.1016/j.bmcl.2016.02.003

    Article  CAS  PubMed  Google Scholar 

  106. Sack JS, Gao M, Kiefer SE et al (2016) Crystal structure of microtubule affinity-regulating kinase 4 catalytic domain in complex with a pyrazolopyrimidine inhibitor. Acta Crystallogr Sect F 72:129–134

    Article  CAS  Google Scholar 

  107. Gan R-Y, Li H-B (2014) Recent progress on liver kinase B1 (LKB1): expression, regulation, downstream signaling and cancer suppressive function. Int J Mol Sci 15:16698–16718. doi:10.3390/ijms150916698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Timm T, Marx A, Panneerselvam S et al (2008) Structure and regulation of MARK, a kinase involved in abnormal phosphorylation of Tau protein. BMC Neurosci 9:S9. doi:10.1186/1471-2202-9-S2-S9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Kodamullil AT, Younesi E, Naz M et al (2015) Computable cause-and-effect models of healthy and Alzheimer’s disease states and their mechanistic differential analysis. Alzheimers Dement J Alzheimers Assoc 11:1329–1339. doi:10.1016/j.jalz.2015.02.006

    Article  Google Scholar 

  110. Ozcan C, Battaglia E, Young R, Suzuki G (2015) LKB1 knockout mouse develops spontaneous atrial fibrillation and provides mechanistic insights into human disease process. J Am Heart Assoc. doi:10.1161/JAHA.114.001733

    PubMed  PubMed Central  Google Scholar 

  111. Shan T, Xiong Y, Kuang S (2016) Deletion of Lkb1 in adult mice results in body weight reduction and lethality. Sci Rep 6:36561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Marx A, Nugoor C, Panneerselvam S, Mandelkow E (2010) Structure and function of polarity-inducing kinase family MARK/Par-1 within the branch of AMPK/Snf1-related kinases. FASEB J 24:1637–1648. doi:10.1096/fj.09-148064

    Article  CAS  PubMed  Google Scholar 

  113. Matenia D, Griesshaber B, Li X et al (2005) PAK5 kinase is an inhibitor of MARK/Par-1, which leads to stable microtubules and dynamic actin. Mol Biol Cell 16:4410–4422. doi:10.1091/mbc.E05-01-0081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Benton R, Palacios IM, Johnston DS (2002) Drosophila 14-3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation. Dev Cell 3:659–671. doi:10.1016/S1534-5807(02)00320-9

    Article  CAS  PubMed  Google Scholar 

  115. Naz F, Islam A, Ahmad F, Hassan MI (2015) Atypical PKC phosphorylates microtubule affinity-regulating kinase 4 in vitro. Mol Cell Biochem 410:223–228. doi:10.1007/s11010-015-2555-3

    Article  CAS  PubMed  Google Scholar 

  116. Watkins JL, Lewandowski KT, Meek SEM et al (2008) Phosphorylation of the Par-1 polarity kinase by protein kinase D regulates 14-3-3 binding and membrane association. Proc Natl Acad Sci 105:18378–18383. doi:10.1073/pnas.0809661105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Timm T, Balusamy K, Li X et al (2008) Glycogen synthase kinase (GSK) 3β directly phosphorylates serine 212 in the regulatory loop and inhibits microtubule affinity-regulating kinase (MARK) 2. J Biol Chem 283:18873–18882. doi:10.1074/jbc.M706596200

    Article  CAS  PubMed  Google Scholar 

  118. Kosuga S, Tashiro E, Kajioka T et al (2005) GSK-3beta directly phosphorylates and activates MARK2/PAR-1. J Biol Chem. doi:10.1074/jbc.M507941200

    PubMed  Google Scholar 

  119. Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67:195–203. doi:10.1016/j.pharep.2014.09.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Czech Ministry of Education, Youth and Sports (Grant Numbers: LO1304, LM2011024) and Ministry of Health of the Czech Republic (Grant Number: NV15-31984A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viswanath Das.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interests. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annadurai, N., Agrawal, K., Džubák, P. et al. Microtubule affinity-regulating kinases are potential druggable targets for Alzheimer’s disease. Cell. Mol. Life Sci. 74, 4159–4169 (2017). https://doi.org/10.1007/s00018-017-2574-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2574-1

Keywords

Navigation