Skip to main content

Advertisement

Log in

Microtubule Affinity-Regulating Kinase 4: Structure, Function, and Regulation

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

MAP/Microtubule affinity-regulating kinase 4 (MARK4) belongs to the family of serine/threonine kinases that phosphorylate the microtubule-associated proteins (MAP) causing their detachment from the microtubules thereby increasing microtubule dynamics and facilitating cell division, cell cycle control, cell polarity determination, cell shape alterations, etc. The MARK4 gene encodes two alternatively spliced isoforms, L and S that differ in their C-terminal region. These isoforms are differentially regulated in human tissues including central nervous system. MARK4L is a 752-residue-long polypeptide that is divided into three distinct domains: (1) protein kinase domain (59–314), (2) ubiquitin-associated domain (322–369), and (3) kinase-associated domain (703–752) plus 54 residues (649–703) involved in the proper folding and function of the enzyme. In addition, residues 65–73 are considered to be the ATP-binding domain and Lys88 is considered as ATP-binding site. Asp181 has been proposed to be the active site of MARK4 that is activated by phosphorylation of Thr214 side chain. The isoform MARK4S is highly expressed in the normal brain and is presumably involved in neuronal differentiation. On the other hand, the isoform MARK4L is upregulated in hepatocarcinoma cells and gliomas suggesting its involvement in cell cycle. Several biological functions are also associated with MARK4 including microtubule bundle formation, nervous system development, and positive regulation of programmed cell death. Therefore, MARK4 is considered as the most suitable target for structure-based rational drug design. Our sequence, structure- and function-based analysis should be helpful for better understanding of mechanisms of regulation of microtubule dynamics and MARK4 associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M., & Mandelkow, E. (1997). MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell, 89(2), 297–308.

    Article  PubMed  CAS  Google Scholar 

  2. Timm, T., Marx, A., Panneerselvam, S., Mandelkow, E., & Mandelkow, E. M. (2008). Structure and regulation of MARK, a kinase involved in abnormal phosphorylation of Tau protein. BMC Neuroscience, 9(Suppl 2), S9.

    Article  PubMed  Google Scholar 

  3. Pellettieri, J., & Seydoux, G. (2002). Anterior-posterior polarity in C. elegans and Drosophila–PARallels and differences. Science, 298(5600), 1946–1950.

    Article  PubMed  CAS  Google Scholar 

  4. Tassan, J. P., & Le Goff, X. (2004). An overview of the KIN1/PAR-1/MARK kinase family. Biology of the Cell, 96(3), 193–199.

    Article  PubMed  CAS  Google Scholar 

  5. Kemphues, K. (2000). PARsing embryonic polarity. Cell, 101(4), 345–348.

    Article  PubMed  CAS  Google Scholar 

  6. Espinosa, L., & Navarro, E. (1998). Human serine/threonine protein kinase EMK1: genomic structure and cDNA cloning of isoforms produced by alternative splicing. Cytogenetics and Cell Genetics, 81(3–4), 278–282.

    PubMed  CAS  Google Scholar 

  7. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science, 298(5600), 1912–1934.

    Article  PubMed  CAS  Google Scholar 

  8. Cohen, P., & Goedert, M. (2004). GSK3 inhibitors: Development and therapeutic potential. Nature Reviews Drug Discovery, 3(6), 479–487.

    Article  PubMed  CAS  Google Scholar 

  9. Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., et al. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. Journal of Clinical Investigation, 108(8), 1167–1174.

    PubMed  CAS  Google Scholar 

  10. Bright, N. J., Thornton, C., & Carling, D. (2009). The regulation and function of mammalian AMPK-related kinases. Acta Physiologica (Oxford), 196(1), 15–26.

    Article  CAS  Google Scholar 

  11. Marx, A., Nugoor, C., Panneerselvam, S., & Mandelkow, E. (2010). Structure and function of polarity-inducing kinase family MARK/Par-1 within the branch of AMPK/Snf1-related kinases. The FASEB Journal, 24(6), 1637–1648.

    Article  CAS  Google Scholar 

  12. Timm, T., Balusamy, K., Li, X., Biernat, J., Mandelkow, E., & Mandelkow, E. M. (2008). Glycogen synthase kinase (GSK) 3beta directly phosphorylates Serine 212 in the regulatory loop and inhibits microtubule affinity-regulating kinase (MARK) 2. Journal of Biological Chemistry, 283(27), 18873–18882.

    Article  PubMed  CAS  Google Scholar 

  13. Kato, T., Satoh, S., Okabe, H., Kitahara, O., Ono, K., Kihara, C., et al. (2001). Isolation of a novel human gene, MARKL1, homologous to MARK3 and its involvement in hepatocellular carcinogenesis. Neoplasia, 3(1), 4–9.

    Article  PubMed  CAS  Google Scholar 

  14. Moroni, R. F., De Biasi, S., Colapietro, P., Larizza, L., & Beghini, A. (2006). Distinct expression pattern of microtubule-associated protein/microtubule affinity-regulating kinase 4 in differentiated neurons. Neuroscience, 143(1), 83–94.

    Article  PubMed  CAS  Google Scholar 

  15. Timm, T., Li, X. Y., Biernat, J., Jiao, J., Mandelkow, E., Vandekerckhove, J., et al. (2003). MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. The EMBO Journal, 22(19), 5090–5101.

    Article  PubMed  CAS  Google Scholar 

  16. Al-Hakim, A. K., Zagorska, A., Chapman, L., Deak, M., Peggie, M., & Alessi, D. R. (2008). Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. The Biochemistry Journal, 411(2), 249–260.

    Article  CAS  Google Scholar 

  17. Brajenovic, M., Joberty, G., Kuster, B., Bouwmeester, T., & Drewes, G. (2004). Comprehensive proteomic analysis of human Par protein complexes reveals an interconnected protein network. Journal of Biological Chemistry, 279(13), 12804–12811.

    Article  PubMed  CAS  Google Scholar 

  18. Trinczek, B., Brajenovic, M., Ebneth, A., & Drewes, G. (2004). MARK4 is a novel microtubule-associated proteins/microtubule affinity-regulating kinase that binds to the cellular microtubule network and to centrosomes. Journal of Biological Chemistry, 279(7), 5915–5923.

    Article  PubMed  CAS  Google Scholar 

  19. Schneider, A., Laage, R., von Ahsen, O., Fischer, A., Rossner, M., Scheek, S., et al. (2004). Identification of regulated genes during permanent focal cerebral ischaemia: Characterization of the protein kinase 9b5/MARKL1/MARK4. Journal of Neurochemistry, 88(5), 1114–1126.

    Article  PubMed  CAS  Google Scholar 

  20. Magnani, I., Novielli, C., Bellini, M., Roversi, G., Bello, L., & Larizza, L. (2009). Multiple localization of endogenous MARK4L protein in human glioma. Cellular Oncology, 31(5), 357–370.

    PubMed  CAS  Google Scholar 

  21. Magnani, I., Novielli, C., Fontana, L., Tabano, S., Rovina, D., Moroni, R. F., et al. (2011). Differential signature of the centrosomal MARK4 isoforms in glioma. Analytical Cellular Pathology (Amsterdam), 34(6), 319–338.

    CAS  Google Scholar 

  22. Beghini, A., Magnani, I., Roversi, G., Piepoli, T., Di Terlizzi, S., Moroni, R. F., et al. (2003). The neural progenitor-restricted isoform of the MARK4 gene in 19q13.2 is upregulated in human gliomas and overexpressed in a subset of glioblastoma cell lines. Oncogene, 22(17), 2581–2591.

    Article  PubMed  CAS  Google Scholar 

  23. Matenia, D., & Mandelkow, E. M. (2009). The tau of MARK: A polarized view of the cytoskeleton. Trends in Biochemical Sciences, 34(7), 332–342.

    Article  PubMed  CAS  Google Scholar 

  24. Benton, R., Palacios, I. M., & St Johnston, D. (2002). Drosophila 14–3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation. Developmental Cell, 3(5), 659–671.

    Article  PubMed  CAS  Google Scholar 

  25. Matenia, D., Griesshaber, B., Li, X. Y., Thiessen, A., Johne, C., Jiao, J., et al. (2005). PAK5 kinase is an inhibitor of MARK/Par-1, which leads to stable microtubules and dynamic actin. Molecular Biology of the Cell, 16(9), 4410–4422.

    Article  PubMed  CAS  Google Scholar 

  26. Lizcano, J. M., Goransson, O., Toth, R., Deak, M., Morrice, N. A., Boudeau, J., et al. (2004). LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. The EMBO Journal, 23(4), 833–843.

    Article  PubMed  CAS  Google Scholar 

  27. Hurov, J. B., Watkins, J. L., & Piwnica-Worms, H. (2004). Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Current Biology, 14(8), 736–741.

    Article  PubMed  CAS  Google Scholar 

  28. Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738.

    Article  PubMed  CAS  Google Scholar 

  29. Marx, A., Nugoor, C., Muller, J., Panneerselvam, S., Timm, T., Bilang, M., et al. (2006). Structural variations in the catalytic and ubiquitin-associated domains of microtubule-associated protein/microtubule affinity regulating kinase (MARK) 1 and MARK2. Journal of Biological Chemistry, 281(37), 27586–27599.

    Article  PubMed  CAS  Google Scholar 

  30. Panneerselvam, S., Marx, A., Mandelkow, E. M., & Mandelkow, E. (2006). Structure of the catalytic and ubiquitin-associated domains of the protein kinase MARK/Par-1. Structure, 14(2), 173–183.

    Article  PubMed  CAS  Google Scholar 

  31. Murphy, J. M., Korzhnev, D. M., Ceccarelli, D. F., Briant, D. J., Zarrine-Afsar, A., Sicheri, F., et al. (2007). Conformational instability of the MARK3 UBA domain compromises ubiquitin recognition and promotes interaction with the adjacent kinase domain. Proceedings of the National Academy of Sciences of the United States of America, 104(36), 14336–14341.

    Article  PubMed  CAS  Google Scholar 

  32. Kyriakis, J. M., & Avruch, J. (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological Reviews, 81(2), 807–869.

    PubMed  CAS  Google Scholar 

  33. Watkins, J. L., Lewandowski, K. T., Meek, S. E., Storz, P., Toker, A., & Piwnica-Worms, H. (2008). Phosphorylation of the Par-1 polarity kinase by protein kinase D regulates 14–3–3 binding and membrane association. Proceedings of the National Academy of Sciences of the United States of America, 105(47), 18378–18383.

    Article  PubMed  CAS  Google Scholar 

  34. Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, S. J., Hotz, H. R., et al. (2008). The Pfam protein families database. Nucleic Acids Research, 36(Database issue), D281–D288.

    PubMed  CAS  Google Scholar 

  35. Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., Cuche, B. A., de Castro, E., et al. (2008). The 20 years of PROSITE. Nucleic Acids Research, 36(Database issue), D245–D249.

    PubMed  CAS  Google Scholar 

  36. Tochio, N., Koshiba, S., Kobayashi, N., Inoue, M., Yabuki, T., Aoki, M., et al. (2006). Solution structure of the kinase-associated domain 1 of mouse microtubule-associated protein/microtubule affinity-regulating kinase 3. Protein Science, 15(11), 2534–2543.

    Article  PubMed  CAS  Google Scholar 

  37. Moravcevic, K., Mendrola, J. M., Schmitz, K. R., Wang, Y. H., Slochower, D., Janmey, P. A., et al. (2010). Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Cell, 143(6), 966–977.

    Article  PubMed  CAS  Google Scholar 

  38. Elbert, M., Rossi, G., & Brennwald, P. (2005). The yeast par-1 homologs kin1 and kin2 show genetic and physical interactions with components of the exocytic machinery. Molecular Biology of the Cell, 16(2), 532–549.

    Article  PubMed  CAS  Google Scholar 

  39. Schneider, A., Martin-Villalba, A., Weih, F., Vogel, J., Wirth, T., & Schwaninger, M. (1999). NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nature Medicine, 5(5), 554–559.

    Article  PubMed  CAS  Google Scholar 

  40. Sharp, F. R., Lu, A., Tang, Y., & Millhorn, D. E. (2000). Multiple molecular penumbras after focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 20(7), 1011–1032.

    PubMed  CAS  Google Scholar 

  41. Drewes, G., Trinczek, B., Illenberger, S., Biernat, J., Schmitt-Ulms, G., Meyer, H. E., et al. (1995). Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. Journal of Biological Chemistry, 270(13), 7679–7688.

    Article  PubMed  CAS  Google Scholar 

  42. Jenkins, S. M., & Johnson, G. V. (2000). Microtubule/MAP-affinity regulating kinase (MARK) is activated by phenylarsine oxide in situ and phosphorylates tau within its microtubule-binding domain. Journal of Neurochemistry, 74(4), 1463–1468.

    Article  PubMed  CAS  Google Scholar 

  43. Mandelkow, E. M., Thies, E., Trinczek, B., Biernat, J., & Mandelkow, E. (2004). MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. Journal of Cell Biology, 167(1), 99–110.

    Article  PubMed  CAS  Google Scholar 

  44. Schmitt-Ulms, G., Matenia, D., Drewes, G., & Mandelkow, E. M. (2009). Interactions of MAP/microtubule affinity regulating kinases with the adaptor complex AP-2 of clathrin-coated vesicles. Cell Motility and the Cytoskeleton, 66(8), 661–672.

    Article  PubMed  CAS  Google Scholar 

  45. Jancsik, V., Filliol, D., & Rendon, A. (1996). Tau proteins bind to kinesin and modulate its activation by microtubules. Neurobiology (Bp), 4(4), 417–429.

    CAS  Google Scholar 

  46. Ebneth, A., Drewes, G., Mandelkow, E. M., & Mandelkow, E. (1999). Phosphorylation of MAP2c and MAP4 by MARK kinases leads to the destabilization of microtubules in cells. Cell Motility and the Cytoskeleton, 44(3), 209–224.

    Article  PubMed  CAS  Google Scholar 

  47. Hasegawa, M., Morishima-Kawashima, M., Takio, K., Suzuki, M., Titani, K., & Ihara, Y. (1992). Protein sequence and mass spectrometric analyses of tau in the Alzheimer’s disease brain. Journal of Biological Chemistry, 267(24), 17047–17054.

    PubMed  CAS  Google Scholar 

  48. Alonso, A. C., Zaidi, T., Grundke-Iqbal, I., & Iqbal, K. (1994). Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 91(12), 5562–5566.

    Article  PubMed  CAS  Google Scholar 

  49. Bertolaet, B. L., Clarke, D. J., Wolff, M., Watson, M. H., Henze, M., Divita, G., et al. (2001). UBA domains of DNA damage-inducible proteins interact with ubiquitin. Natural Structural Biology, 8(5), 417–422.

    Article  CAS  Google Scholar 

  50. Jaleel, M., Villa, F., Deak, M., Toth, R., Prescott, A. R., Van Aalten, D. M., et al. (2006). The ubiquitin-associated domain of AMPK-related kinases regulates conformation and LKB1-mediated phosphorylation and activation. The Biochemistry Journal, 394(Pt 3), 545–555.

    CAS  Google Scholar 

  51. Roversi, G., Pfundt, R., Moroni, R. F., Magnani, I., van Reijmersdal, S., Pollo, B., et al. (2006). Identification of novel genomic markers related to progression to glioblastoma through genomic profiling of 25 primary glioma cell lines. Oncogene, 25(10), 1571–1583.

    Article  PubMed  CAS  Google Scholar 

  52. Magnani, I., Moroni, R. F., Roversi, G., Beghini, A., Pfundt, R., Schoenmakers, E. F., et al. (2005). Identification of oligodendroglioma specific chromosomal copy number changes in the glioblastoma MI-4 cell line by array-CGH and FISH analyses. Cancer Genetics and Cytogenetics, 161(2), 140–145.

    Article  PubMed  CAS  Google Scholar 

  53. Hartmann, C., Johnk, L., Kitange, G., Wu, Y., Ashworth, L. K., Jenkins, R. B., et al. (2002). Transcript map of the 3.7-Mb D19S112-D19S246 candidate tumor suppressor region on the long arm of chromosome 19. Cancer Research, 62(14), 4100–4108.

    PubMed  CAS  Google Scholar 

  54. Wojcik, E., Basto, R., Serr, M., Scaerou, F., Karess, R., & Hays, T. (2001). Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nature Cell Biology, 3(11), 1001–1007.

    Article  PubMed  CAS  Google Scholar 

  55. Dehmelt, L., & Halpain, S. (2005). The MAP2/Tau family of microtubule-associated proteins. Genome Biology, 6(1), 204.

    Article  PubMed  Google Scholar 

  56. Mandelkow, E. M., & Mandelkow, E. (1998). Tau in Alzheimer’s disease. Trends in Cell Biology, 8(11), 425–427.

    Article  PubMed  CAS  Google Scholar 

  57. Morishima-Kawashima, M., Hasegawa, M., Takio, K., Suzuki, M., Yoshida, H., Titani, K., et al. (1995). Proline-directed and non-proline-directed phosphorylation of PHF-tau. Journal of Biological Chemistry, 270(2), 823–829.

    Article  PubMed  CAS  Google Scholar 

  58. Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M., & Binder, L. I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy of Sciences of the United States of America, 83(13), 4913–4917.

    Article  PubMed  CAS  Google Scholar 

  59. Guerreiro, R. J., & Hardy, J. (2011). Alzheimer’s disease genetics: Lessons to improve disease modelling. Biochemical Society Transactions, 39(4), 910–916.

    Article  PubMed  CAS  Google Scholar 

  60. Mocanu, M. M., Nissen, A., Eckermann, K., Khlistunova, I., Biernat, J., Drexler, D., et al. (2008). The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. Journal of Neuroscience, 28(3), 737–748.

    Article  PubMed  CAS  Google Scholar 

  61. Chin, J. Y., Knowles, R. B., Schneider, A., Drewes, G., Mandelkow, E. M., & Hyman, B. T. (2000). Microtubule-affinity regulating kinase (MARK) is tightly associated with neurofibrillary tangles in Alzheimer brain: A fluorescence resonance energy transfer study. Journal of Neuropathology and Experimental Neurology, 59(11), 966–971.

    PubMed  CAS  Google Scholar 

  62. Schneider, A., & Mandelkow, E. (2008). Tau-based treatment strategies in neurodegenerative diseases. Neurotherapeutics, 5(3), 443–457.

    Article  PubMed  CAS  Google Scholar 

  63. Thies, E., & Mandelkow, E. M. (2007). Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1. Journal of Neuroscience, 27(11), 2896–2907.

    Article  PubMed  CAS  Google Scholar 

  64. Cohen, P. (2002). Protein kinases–the major drug targets of the twenty-first century? Nature Reviews Drug Discovery, 1(4), 309–315.

    Article  PubMed  CAS  Google Scholar 

  65. Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature, 446(7132), 153–158.

    Article  PubMed  CAS  Google Scholar 

  66. de Leng, W. W., Jansen, M., Carvalho, R., Polak, M., Musler, A. R., Milne, A. N., et al. (2007). Genetic defects underlying Peutz-Jeghers syndrome (PJS) and exclusion of the polarity-associated MARK/Par1 gene family as potential PJS candidates. Clinical Genetics, 72(6), 568–573.

    Article  PubMed  Google Scholar 

  67. Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., et al. (2011). The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Research, 39, D561–D568.

    Article  PubMed  CAS  Google Scholar 

  68. Angrand, P. O., Segura, I., Volkel, P., Ghidelli, S., Terry, R., Brajenovic, M., et al. (2006). Transgenic mouse proteomics identifies new 14–3–3-associated proteins involved in cytoskeletal rearrangements and cell signaling. Molecular and Cellular Proteomics, 5(12), 2211–2227.

    Article  PubMed  CAS  Google Scholar 

  69. Urbe, S., Liu, H., Hayes, S. D., Heride, C., Rigden, D. J., & Clague, M. J. (2012). Systematic survey of deubiquitinase localization identifies USP21 as a regulator of centrosome- and microtubule-associated functions. Molecular Biology of the Cell, 23(6), 1095–1103.

    Article  PubMed  CAS  Google Scholar 

  70. Thomson, D. M., Hansen, M. D., & Winder, W. W. (2008). Regulation of the AMPK-related protein kinases by ubiquitination. Biochemistry Journal, 411(2), e9–e10.

    Article  CAS  Google Scholar 

  71. Sowa, M. E., Bennett, E. J., Gygi, S. P., & Harper, J. W. (2009). Defining the human deubiquitinating enzyme interaction landscape. Cell, 138(2), 389–403.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

F.N. expressed her thanks to the Council of Scientific and Industrial Research (CSIR) for fellowship. M.I.H. and F.A. are thankful to the Department of Science and Technology, Indian Council of Medical Research, University Grants Commission and CSIR for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Imtaiyaz Hassan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naz, F., Anjum, F., Islam, A. et al. Microtubule Affinity-Regulating Kinase 4: Structure, Function, and Regulation. Cell Biochem Biophys 67, 485–499 (2013). https://doi.org/10.1007/s12013-013-9550-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9550-7

Keywords

Navigation