Skip to main content
Log in

Heritability of targeted gene modifications induced by plant-optimized CRISPR systems

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The Streptococcus-derived CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR-associated protein 9) system has emerged as a very powerful tool for targeted gene modifications in many living organisms including plants. Since the first application of this system for plant gene modification in 2013, this RNA-guided DNA endonuclease system has been extensively engineered to meet the requirements of functional genomics and crop trait improvement in a number of plant species. Given its short history, the emphasis of many studies has been the optimization of the technology to improve its reliability and efficiency to generate heritable gene modifications in plants. Here we review and analyze the features of customized CRISPR/Cas9 systems developed for plant genetic studies and crop breeding. We focus on two essential aspects: the heritability of gene modifications induced by CRISPR/Cas9 and the factors affecting its efficiency, and we provide strategies for future design of systems with improved activity and heritability in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Compass G (2016) Cultivation of GM plants: Increase worldwide, no great change in Europe. http://www.gmo-compassorg/eng/agri_biotechnology/gmo_planting/

  2. Phillips T (2008) Genetically modified organisms (GMOs): transgenic crops and recombinant DNA technology. Nat Educ 1(1):213

    Google Scholar 

  3. Grunewald W, Bury J, Inze D (2013) Biotechnology: thirty years of transgenic plants. Nature 497(7447):40. doi:10.1038/497040a

    Article  CAS  PubMed  Google Scholar 

  4. Compass G (2016) Genetically modified plants and the environment. http://www.gmo-compassorg/eng/safety/environmental_safety/

  5. Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12(6):e1001877. doi:10.1371/journal.pbio.1001877

    Article  PubMed  PubMed Central  Google Scholar 

  6. Radding CM (1982) Homologous pairing and strand exchange in genetic recombination. Annu Rev Genet 16:405–437. doi:10.1146/annurev.ge.16.120182.002201

    Article  CAS  PubMed  Google Scholar 

  7. Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6(6):507–512. doi:10.1038/nrg1619

    Article  CAS  PubMed  Google Scholar 

  8. Paszkowski J, Baur M, Bogucki A, Potrykus I (1988) Gene targeting in plants. EMBO J 7(13):4021–4026

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Swoboda P, Gal S, Hohn B, Puchta H (1994) Intrachromosomal homologous recombination in whole plants. EMBO J 13(2):484–489

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Puchta H, Dujon B, Hohn B (1993) Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 21(22):5034–5040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Puchta H, Dujon B, Hohn B (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci USA 93(10):5055–5060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiurazzi M, Ray A, Viret JF, Perera R, Wang XH, Lloyd AM, Signer ER (1996) Enhancement of somatic intrachromosomal homologous recombination in Arabidopsis by the HO endonuclease. Plant Cell 8(11):2057–2066. doi:10.1105/tpc.8.11.2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79(2010):181–211. doi:10.1146/annurev.biochem.052308.093131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17(20):6086–6095. doi:10.1093/emboj/17.20.6086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93(3):1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang B, Sugio A, White FF (2006) Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA 103(27):10503–10508. doi:10.1073/pnas.0604088103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512. doi:10.1126/science.1178811

    Article  CAS  PubMed  Google Scholar 

  18. Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252(5007):809–817

    Article  CAS  PubMed  Google Scholar 

  19. Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 28(17):3361–3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761. doi:10.1534/genetics.110.120717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459(7245):442–445. doi:10.1038/nature07845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102(6):2232–2237. doi:10.1073/pnas.0409339102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459(7245):437–441. doi:10.1038/nature07992

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2012) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161(1):20–27. doi:10.1104/pp.112.205179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30(5):390–392. doi:10.1038/nbt.2199

    Article  CAS  PubMed  Google Scholar 

  26. Pattanayak V, Ramirez CL, Joung JK, Liu DR (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8(9):765–770. doi:10.1038/nmeth.1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338. doi:10.1038/nature10886

    Article  CAS  PubMed  Google Scholar 

  28. Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297. doi:10.1146/annurev-genet-110410-132430

    Article  CAS  PubMed  Google Scholar 

  29. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. doi:10.1126/science.1225829

    Article  CAS  PubMed  Google Scholar 

  30. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607. doi:10.1038/nature09886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155(Pt 3):733–740. doi:10.1099/mic.0.023960-0

    Article  CAS  PubMed  Google Scholar 

  32. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. doi:10.1038/nbt.2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949. doi:10.1016/j.cell.2014.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. doi:10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. doi:10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda) 3(12):2233–2238. doi:10.1534/g3.113.008847

    Article  CAS  Google Scholar 

  37. Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9(4):e93806. doi:10.1371/journal.pone.0093806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9(1):39. doi:10.1186/1746-4811-9-39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kumar V, Jain M (2014) The CRISPR-Cas system for plant genome editing: advances and opportunities. J Exp Bot 66(1):47–57. doi:10.1093/jxb/eru429

    Article  PubMed  CAS  Google Scholar 

  40. Willis IM (1993) RNA polymerase III. Genes, factors and transcriptional specificity. Eur J Biochem 212(1):1–11

    Article  CAS  PubMed  Google Scholar 

  41. Paule MR, White RJ (2000) Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res 28(6):1283–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31(8):691–693. doi:10.1038/nbt.2655

    Article  CAS  PubMed  Google Scholar 

  43. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691. doi:10.1038/nbt.2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:10342. doi:10.1038/srep10342

    Article  PubMed  PubMed Central  Google Scholar 

  45. Michno JM, Wang X, Liu J, Curtin SJ, Kono TJ, Stupar RM (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6(4):243–252. doi:10.1080/21645698.2015.1106063

    Article  PubMed  PubMed Central  Google Scholar 

  46. Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166(3):1292–1297. doi:10.1104/pp.114.247577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One 10(12):e0144591. doi:10.1371/journal.pone.0144591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhang B, Yang X, Yang C, Li M, Guo Y (2016) Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in petunia. Sci Rep 6:20315. doi:10.1038/srep20315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in populus in the first generation. Sci Rep 5:12217. doi:10.1038/srep12217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688. doi:10.1038/nbt.2650

    Article  CAS  PubMed  Google Scholar 

  51. Patro S, Kumar D, Ranjan R, Maiti IB, Dey N (2012) The development of efficient plant promoters for transgene expression employing plant virus promoters. Mol Plant 5(4):941–944. doi:10.1093/mp/sss028

    Article  CAS  PubMed  Google Scholar 

  52. Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18(4):675–689

    Article  CAS  PubMed  Google Scholar 

  53. Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H, Cheng H, Yu D (2015) Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotechnol 217:90–97. doi:10.1016/j.jbiotec.2015.11.005

    Article  PubMed  CAS  Google Scholar 

  54. Mikami M, Toki S, Endo M (2015) Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol 88(6):561–572. doi:10.1007/s11103-015-0342-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yan L, Wei S, Wu Y, Hu R, Li H, Yang W, Xie Q (2015) High-efficiency Genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol Plant 8(12):1820–1823. doi:10.1016/j.molp.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  56. Bortesi L, Fischer R (2014) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33(1):41–52. doi:10.1016/j.biotechadv.2014.12.006

    Article  PubMed  CAS  Google Scholar 

  57. Shou HX, Frame BR, Whitham SA, Wang K (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breeding 13(2):201–208. doi:10.1023/B:Molb.0000018767.64586.53

    Article  CAS  Google Scholar 

  58. Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA (1996) Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol 31(5):957–973

    Article  CAS  PubMed  Google Scholar 

  59. Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532(7599):293. doi:10.1038/nature.2016.19754

    Article  CAS  PubMed  Google Scholar 

  60. Ali Z, Abul-faraj A, Li L, Ghosh N, Piatek M, Mahjoub A, Aouida M, Piatek A, Baltes NJ, Voytas DF, Dinesh-Kumar S, Mahfouz MM (2015) Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant 8(8):1288–1291. doi:10.1016/j.molp.2015.02.011

    Article  CAS  PubMed  Google Scholar 

  61. Yin K, Han T, Liu G, Chen T, Wang Y, Yu AY, Liu Y (2015) A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci Rep 5:14926. doi:10.1038/srep14926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Woo JW, Kim J, Kwon SI, Corvalan C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33(11):1162–1164. doi:10.1038/nbt.3389

    Article  CAS  PubMed  Google Scholar 

  63. Schmidt A, Schmid MW, Grossniklaus U (2015) Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 142(2):229–241. doi:10.1242/dev.102103

    Article  CAS  PubMed  Google Scholar 

  64. Forner J, Pfeiffer A, Langenecker T, Manavella PA, Lohmann JU (2015) Germline-transmitted genome editing in Arabidopsis thaliana Using TAL-effector-nucleases. PLoS One 10(3):e0121056. doi:10.1371/journal.pone.0121056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Walbot V (1996) Sources and consequences of phenotypic and genotypic plasticity in flowering plants. Trends Plant Sci 1(1):27–32

    Article  Google Scholar 

  66. Wang K (2015) Agrobacterium protocols. Methods Mol Biol 1224:vii–viii

    PubMed  Google Scholar 

  67. Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci 316:1194–1199

    CAS  Google Scholar 

  68. Zhang X, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1(2):641–646. doi:10.1038/nprot.2006.97

    Article  CAS  PubMed  Google Scholar 

  69. Liu W, Zhu X, Lei M, Xia Q, Botella J, Zhu J-K, Mao Y (2015) A detailed procedure for CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana. Sci Bull 60(15):1332–1347. doi:10.1007/s11434-015-0848-2

    Article  CAS  Google Scholar 

  70. Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229–1232. doi:10.1038/cr.2013.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L, Liu X, Zhu JK (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111(12):4632–4637. doi:10.1073/pnas.1400822111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6(6):2008–2011. doi:10.1093/mp/sst121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Callis J, Raasch JA, Vierstra RD (1990) Ubiquitin extension proteins of Arabidopsis thaliana. Structure, localization, and expression of their promoters in transgenic tobacco. J Biol Chem 265(21):12486–12493

    CAS  PubMed  Google Scholar 

  74. Custers JBMSS, Jansen HJ, Zhang L, van Lookeren Campagne MM (1999) The 35S-CaMV promoter is silent during early embryogenesis but activated during non-embryo-genic sporophytic development in microspore culture. Protoplasma 208:257–264

    Article  CAS  Google Scholar 

  75. Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15(1):16. doi:10.1186/s12896-015-0131-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169(2):960–970. doi:10.1104/pp.15.00783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One 10(8):e0136064. doi:10.1371/journal.pone.0136064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Collier R, Fuchs B, Walter N, Kevin Lutke W, Taylor CG (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43(3):449–457. doi:10.1111/j.1365-313X.2005.02454.x

    Article  CAS  PubMed  Google Scholar 

  79. Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Xu N, Zhu JK (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12(6):797–807. doi:10.1111/pbi.12200

    Article  CAS  PubMed  Google Scholar 

  80. Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23(1):75–81. doi:10.1038/nbt1043

    Article  CAS  PubMed  Google Scholar 

  81. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951. doi:10.1038/nbt.2969

    Article  CAS  PubMed  Google Scholar 

  82. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. doi:10.1016/j.cell.2013.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24(6):1012–1019. doi:10.1101/gr.171322.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ali Z, Abul-Faraj A, Li L, Ghosh N, Piatek M, Mahjoub A, Aouida M, Piatek A, Baltes NJ, Voytas DF, Dinesh-Kumar S, Mahfouz MM (2015) Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant. doi:10.1016/j.molp.2015.02.011

    PubMed  Google Scholar 

  85. Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25(2):237–245. doi:10.1046/j.0960-7412.2000.00942.x

    Article  CAS  PubMed  Google Scholar 

  86. Turnage MA, Muangsan N, Peele CG, Robertson D (2002) Geminivirus-based vectors for gene silencing in Arabidopsis. Plant Journal 30(1):107–114. doi:10.1046/j.1365-313X.2002.01261.x

    Article  CAS  PubMed  Google Scholar 

  87. Tang Y, Wang F, Zhao J, Xie K, Hong Y, Liu Y (2010) Virus-based microRNA expression for gene functional analysis in plants. Plant Physiol 153(2):632–641. doi:10.1104/pp.110.155796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Senthil-Kumar M, Mysore KS (2011) Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnol J 9(7):797–806. doi:10.1111/j.1467-7652.2011.00589.x

    Article  CAS  PubMed  Google Scholar 

  89. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826. doi:10.1038/nbt.2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31(9):839–843. doi:10.1038/nbt.2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838. doi:10.1038/nbt.2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Carroll D (2013) Staying on target with CRISPR-Cas. Nat Biotechnol 31(9):807–809. doi:10.1038/nbt.2684

    Article  CAS  PubMed  Google Scholar 

  93. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK (2014) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2):187–197. doi:10.1038/nbt.3117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389. doi:10.1016/j.cell.2013.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79(2):348–359. doi:10.1111/tpj.12554

    Article  CAS  PubMed  Google Scholar 

  96. Xie K, Zhang J, Yang Y (2014) Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol Plant 7(5):923–926. doi:10.1093/mp/ssu009

    Article  CAS  PubMed  Google Scholar 

  97. Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7(9):1494–1496. doi:10.1093/mp/ssu044

    Article  CAS  PubMed  Google Scholar 

  98. Chuai GH, Wang QL, Liu Q (2016) In Silico meets in vivo: towards computational CRISPR-based sgRNA design. Trends Biotechnol. doi:10.1016/j.tibtech.2016.06.008

    PubMed  Google Scholar 

  99. Guell M, Yang L, Church GM (2014) Genome editing assessment using CRISPR genome analyzer (CRISPR-GA). Bioinformatics 30(20):2968–2970. doi:10.1093/bioinformatics/btu427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K, Osakabe K (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6:26685. doi:10.1038/srep26685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6(6):1975–1983. doi:10.1093/mp/sst119

    Article  CAS  PubMed  Google Scholar 

  102. Feng C, Yuan J, Wang R, Liu Y, Birchler JA, Han F (2016) Efficient targeted genome modification in maize using CRISPR/Cas9 system. J Genet Genom 43(1):37–43. doi:10.1016/j.jgg.2015.10.002

    Article  Google Scholar 

  103. Lawrenson T, Shorinola O, Stacey N, Li C, Ostergaard L, Patron N, Uauy C, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258. doi:10.1186/s13059-015-0826-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23(10):1233–1236. doi:10.1038/cr.2013.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327. doi:10.1186/s12870-014-0327-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Guo J, Chen L, Zhao X, Dong Z, Liu YG (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284. doi:10.1016/j.molp.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  107. Zhang Z, Mao Y, Ha S, Liu W, Botella JR, Zhu JK (2015) A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep 35(7):1519–1533. doi:10.1007/s00299-015-1900-z

    Article  PubMed  CAS  Google Scholar 

  108. Wang C, Shen L, Fu Y, Yan C, Wang K (2016) A simple CRISPR/Cas9 system for multiplex genome editing in rice. J Genet Genom 42(12):703–706. doi:10.1016/j.jgg.2015.09.011

    Article  Google Scholar 

  109. Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112(11):3570–3575. doi:10.1073/pnas.1420294112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yang WC, Ye D, Xu J, Sundaresan V (1999) The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev 13(16):2108–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K (1999) Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96(20):11664–11669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mao Y, Zhang Z, Feng Z, Wei P, Zhang H, Botella JR, Zhu JK (2015) Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol J 14(2):519–532. doi:10.1111/pbi.12468

    Article  PubMed  CAS  Google Scholar 

  113. Steffen JG, Kang IH, Macfarlane J, Drews GN (2007) Identification of genes expressed in the Arabidopsis female gametophyte. Plant J 51(2):281–292. doi:10.1111/j.1365-313X.2007.03137.x

    Article  CAS  PubMed  Google Scholar 

  114. Sprunck S, Rademacher S, Vogler F, Gheyselinck J, Grossniklaus U, Dresselhaus T (2012) Egg cell-secreted EC1 triggers sperm cell activation during double fertilization. Science 338(6110):1093–1097. doi:10.1126/science.1223944

    Article  CAS  PubMed  Google Scholar 

  115. Eady C, Lindsey K, Twell D (1994) Differential activation and conserved vegetative cell-specific activity of a late pollen promoter in species with bicellular and tricellular pollen. Plant J 5:543–550. doi:10.1046/j.1365-313X.1994.05040543.x

    Article  CAS  Google Scholar 

  116. Wang ZP, Xing HL, Dong L, Zhang HY, Han CY, Wang XC, Chen QJ (2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol 16:144. doi:10.1186/s13059-015-0715-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Rutley N, Twell D (2015) A decade of pollen transcriptomics. Plant Reprod 28(2):73–89. doi:10.1007/s00497-015-0261-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Drews GN, Wang D, Steffen JG, Schumaker KS, Yadegari R (2010) Identification of genes expressed in the angiosperm female gametophyte. J Exp Bot 62(5):1593–1599. doi:10.1093/jxb/erq385

    Article  PubMed  CAS  Google Scholar 

  119. Hyun Y, Kim J, Cho SW, Choi Y, Kim JS, Coupland G (2014) Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta 241(1):271–284. doi:10.1007/s00425-014-2180-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y (2015) Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci USA 112(7):2275–2280. doi:10.1073/pnas.1500365112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hyun Y, Yun H, Park K, Ohr H, Lee O, Kim DH, Sung S, Choi Y (2012) The catalytic subunit of Arabidopsis DNA polymerase alpha ensures stable maintenance of histone modification. Development 140(1):156–166. doi:10.1242/dev.084624

    Article  PubMed  CAS  Google Scholar 

  122. Li H-J, Liu N-Y, Shi D-Q, Liu J, Yang W-C (2010) YAO is a nucleolar WD40-repeat protein critical for embryogenesis and gametogenesis in Arabidopsis. BMC Plant Biol 10(1):1–12. doi:10.1186/1471-2229-10-169

    Article  CAS  Google Scholar 

  123. Atanassova R, Chaubet N, Gigot C (1992) A 126 bp fragment of a plant histone gene promoter confers preferential expression in meristems of transgenic Arabidopsis. Plant J 2(3):291–300

    CAS  PubMed  Google Scholar 

  124. Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360(6401):273–277. doi:10.1038/360273a0

    Article  CAS  PubMed  Google Scholar 

  125. Gao Y, Zhao Y (2014) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol 56(4):343–349. doi:10.1111/jipb.12152

    Article  CAS  PubMed  Google Scholar 

  126. Park JE, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, Kim VN (2011) Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475(7355):201–205. doi:10.1038/nature10198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nissim L, Perli SD, Fridkin A, Perez-Pinera P, Lu TK (2014) Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell 54(4):698–710. doi:10.1016/j.molcel.2014.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mikami M, Toki S, Endo M (2015) Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice. Plant Cell Rep 34(10):1807–1815. doi:10.1007/s00299-015-1826-5

    Article  CAS  PubMed  Google Scholar 

  129. Senthil-Kumar M, Mysore KS (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16(12):656–665. doi:10.1016/j.tplants.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  130. Liu H, Reavy B, Swanson M, MacFarlane SA (2002) Functional replacement of the tobacco rattle virus cysteine-rich protein by pathogenicity proteins from unrelated plant viruses. Virology 298(2):232–239

    Article  CAS  PubMed  Google Scholar 

  131. Maule AJ, Wang D (1996) Seed transmission of plant viruses: a lesson in biological complexity. Trends Microbiol 4(4):153–158. doi:10.1016/0966-842x(96)10016-0

    Article  CAS  PubMed  Google Scholar 

  132. Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26(1):151–163. doi:10.1105/tpc.113.119792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cermak T, Baltes NJ, Cegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232. doi:10.1186/s13059-015-0796-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, Wei W (2014) High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509(7501):487–491. doi:10.1038/nature13166

    Article  CAS  PubMed  Google Scholar 

  135. Mysore KS, Bassuner B, Deng XB, Darbinian NS, Motchoulski A, Ream W, Gelvin SB (1998) Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. Mol Plant Microbe Interact 11(7):668–683. doi:10.1094/MPMI.1998.11.7.668

    Article  CAS  PubMed  Google Scholar 

  136. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191. doi:10.1038/nature14299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. USDA (2016) Regulated article letters of inquiry. https://www.aphis.usda.gov/aphis/ourfocus/biotechnology/am-i-regulated/Regulated+Article+Letters+of+Inquiry

  138. Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464(7288):615–618. doi:10.1038/nature08842

    Article  CAS  PubMed  Google Scholar 

  139. Britt AB, Kuppu S (2016) Cenh3: an emerging player in haploid induction technology. Front Plant Sci 7:357. doi:10.3389/fpls.2016.00357

    Article  PubMed  PubMed Central  Google Scholar 

  140. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41(20):e188. doi:10.1093/nar/gkt780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jiang W, Yang B, Weeks DP (2014) Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS One 9(6):e99225. doi:10.1371/journal.pone.0099225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Lowder LG, Zhang D, Baltes NJ, Paul JW 3rd, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169(2):971–985. doi:10.1104/pp.15.00636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42(17):10903–10914. doi:10.1093/nar/gku806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genom 41(2):63–68. doi:10.1016/j.jgg.2013.12.001

    Article  CAS  Google Scholar 

  145. Zhu J, Song N, Sun S, Yang W, Zhao H, Song W, Lai J (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J Genet Genom 43(1):25–36. doi:10.1016/j.jgg.2015.10.006

    Article  Google Scholar 

  146. Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945. doi:10.1104/pp.15.00793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K, Garcha J, Winte S, Masson H, Inagaki S, Federici F, Sinha N, Deal RB, Bailey-Serres J, Brady SM (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166(2):455–469. doi:10.1104/pp.114.239392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467(1):76–82. doi:10.1016/j.bbrc.2015.09.117

    Article  CAS  PubMed  Google Scholar 

  149. Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34(9):1473–1476. doi:10.1007/s00299-015-1816-7

    Article  CAS  PubMed  Google Scholar 

  150. Subburaj S, Chung SJ, Lee C, Ryu SM, Kim DH, Kim JS, Bae S, Lee GJ (2016) Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Rep. doi:10.1007/s00299-016-1937-7

    PubMed  Google Scholar 

  151. Sugano SS, Shirakawa M, Takagi J, Matsuda Y, Shimada T, Hara-Nishimura I, Kohchi T (2014) CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol 55(3):475–481. doi:10.1093/pcp/pcu014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the Zhu lab for helpful discussion and insights with this work. Our work was supported by the Chinese Academy of Sciences. JRB acknowledges the award of a Visiting Professorship for Senior International Scientists by the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanfei Mao or Jian-Kang Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with respect to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Botella, J.R. & Zhu, JK. Heritability of targeted gene modifications induced by plant-optimized CRISPR systems. Cell. Mol. Life Sci. 74, 1075–1093 (2017). https://doi.org/10.1007/s00018-016-2380-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2380-1

Keywords

Navigation