Skip to main content
Log in

A detailed procedure for CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana

  • Article
  • Life & Medical Sciences
  • Published:
Science Bulletin

Abstract

The newly developed CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-associated) system has emerged as an efficient tool for genome-editing, providing an alternative to classical mutagenesis and transgenic methods to study gene function and improve crop traits. CRISPR/Cas facilitates targeted gene editing through RNA-guided DNA cleavage followed by cellular DNA repair mechanisms that introduce sequence changes at the site of cleavage. Here we describe a detailed procedure for our previously developed and highly efficient CRISPR/Cas9 method that allows the generation of heritable-targeted gene mutations and corrections in Arabidopsis. This protocol describes the strategies and steps for the selection of targets, design of single-guide RNA (sgRNA), vector construction and analysis of transgenic lines. We also offer a method to target two loci simultaneously using vectors containing two different sgRNAs. The principles described in this protocol can be applied to other plant species to generate stably inherited DNA modifications.

摘要

CRISPR是一类来源于细菌的“规律间隔成簇短回文重复序列”,通过与Cas9蛋白形成二元复合体来识别特定的DNA序列。近年来的研究表明,经过改造的CRISPR/Cas9系统可以在植物体内实现对目标基因的高效编辑,从而有望取代经典的基因突变技术和转基因技术来满足基因功能研究和作物品种研发的需要。定制后的CRISPR/Cas9复合体可以根据给定的序列,以碱基配对的方式结合到目标位点上,并造成双链DNA断裂。这种严重的DNA损伤,会激活细胞内源的DNA损伤修复通路,在缺乏模板的情况下,这类修复往往是不正确的,极易导致断裂位置的碱基改变。本文详细描述了如何利用已有的CRISPR/Cas9系统,在拟南芥中进行可遗传的基因定点修饰的策略和具体步骤, 包括靶位点的选择、引导RNA的设计、载体构建和转基因植物的检测和分析。另外,我们也提供了在原有质粒的基础上,构建双敲载体的方法。本实验方案所涉及的原理和策略也同样可以移植到其他植物品种上,来实现可遗传的基因修饰。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Redondo P, Prieto J, Munoz IG et al (2008) Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 456:107–111

    Article  Google Scholar 

  2. Lloyd A (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102:2232–2237

    Article  Google Scholar 

  3. Wright DA, Townsend JA, Winfrey RJ Jr et al (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705

    Article  Google Scholar 

  4. Shukla VK, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Article  Google Scholar 

  5. Zhang F, Voytas DF (2010) Targeted mutagenesis in Arabidopsis using zinc-finger nucleases. Methods Mol Biol 701:167–177

    Article  Google Scholar 

  6. Miller JC, Holmes MC, Wang J et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785

    Article  Google Scholar 

  7. Miller JC, Tan S, Qiao G et al (2010) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  Google Scholar 

  8. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    Article  Google Scholar 

  9. Mahfouz MM, Li L, Shamimuzzaman M et al (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA 108:2623–2628

    Article  Google Scholar 

  10. Li T, Liu B, Spalding MH et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  Google Scholar 

  11. Christian M, Qi Y, Zhang Y et al (2013) Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 (Bethesda) 3:1697–1705

    Article  Google Scholar 

  12. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  Google Scholar 

  13. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  Google Scholar 

  14. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  Google Scholar 

  15. Sung P, Klein H (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7:739–750

    Article  Google Scholar 

  16. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  Google Scholar 

  17. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  Google Scholar 

  18. Garneau JE, Dupuis ME, Villion M et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    Article  Google Scholar 

  19. Marraffini LA, Sontheimer EJ (2010) Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463:568–571

    Article  Google Scholar 

  20. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  Google Scholar 

  21. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  Google Scholar 

  22. Feng Z, Zhang B, Ding W et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232

    Article  Google Scholar 

  23. Jiang W, Zhou H, Bi H et al (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    Article  Google Scholar 

  24. Li JF, Norville JE, Aach J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  Google Scholar 

  25. Mao Y, Zhang H, Xu N et al (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6:2008–2011

    Article  Google Scholar 

  26. Miao J, Guo D, Zhang J et al (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236

    Article  Google Scholar 

  27. Nekrasov V, Staskawicz B, Weigel D et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693

    Article  Google Scholar 

  28. Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  Google Scholar 

  29. Upadhyay SK, Kumar J, Alok A et al (2013) RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda) 3:2233–2238

    Article  Google Scholar 

  30. Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975–1983

    Article  Google Scholar 

  31. Brooks C, Nekrasov V, Lippman ZB et al (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated system. Plant Physiol 166:1292–1297

    Article  Google Scholar 

  32. Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359

    Article  Google Scholar 

  33. Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9:e93806

    Article  Google Scholar 

  34. Xing HL, Dong L, Wang ZP et al (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327

    Article  Google Scholar 

  35. Zhang H, Zhang J, Wei P et al (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807

    Article  Google Scholar 

  36. Feng Z, Mao Y, Xu N et al (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111:4632–4637

    Article  Google Scholar 

  37. Yan M, Zhou SR, Xue HW (2014) CRISPR primer designer: design primers for knockout and chromosome imaging CRISPR-Cas system. J Integr Plant Biol. doi:10.1111/jipb.12295

    Google Scholar 

  38. Weigel D, Glazebrook J (2006) Transformation of Agrobacterium using the freeze-thaw method. CSH Protoc. doi:10.1101/pdb.prot4666

    Google Scholar 

  39. Weigel D, Glazebrook J (2006) In planta transformation of Arabidopsis. CSH Protoc. doi:10.1101/pdb.prot4668

    Google Scholar 

  40. Wu FH, Shen SC, Lee LY et al (2009) Tape-Arabidopsis Sandwich: a simpler Arabidopsis protoplast isolation method. Plant Methods 5:16

    Article  Google Scholar 

  41. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  Google Scholar 

  42. Springer NM (2010) Isolation of plant DNA for PCR and genotyping using organic extraction and CTAB. CSH Protoc. doi:10.1101/pdb.prot5515

    Google Scholar 

  43. Neff MM, Neff JD, Chory J et al (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392

    Article  Google Scholar 

  44. Qiu P, Shandilya H, D’alessio JM et al (2004) Mutation detection using Surveyor nuclease. Biotechniques 36:702–707

    Google Scholar 

  45. Xiao A, Wang Z, Hu Y et al (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res 41:e141

    Article  Google Scholar 

  46. Canver MC, Bauer DE, Dass A et al (2014) Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J Biol Chem 289:21312–21324

    Article  Google Scholar 

  47. Jiang W, Bikard D, Cox D et al (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239

    Article  Google Scholar 

  48. Wang T, Wei JJ, Sabatini DM et al (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84

    Article  Google Scholar 

  49. O’malley RC, Ecker JR (2010) Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J 61:928–940

    Article  Google Scholar 

  50. Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  Google Scholar 

  51. Wu X, Kriz AJ, Sharp PA (2015) Target specificity of the CRISPR-Cas9 system. Quant Biol 2:59–70

    Article  Google Scholar 

  52. Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112:3570–3575

    Article  Google Scholar 

  53. Baltes NJ, Gil-Humanes J, Cermak T et al (2014) DNA replicons for plant genome engineering. Plant Cell 26:151–163

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Chinese Academy of Sciences and China Scholarship Council (201206050103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingyou Xia or Yanfei Mao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhu, X., Lei, M. et al. A detailed procedure for CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana . Sci. Bull. 60, 1332–1347 (2015). https://doi.org/10.1007/s11434-015-0848-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0848-2

Keywords

Navigation