Skip to main content
Log in

Mixed Wavelet Leaders Multifractal Formalism for Baire Generic Functions in a Product of Intersections of Hölder Spaces with Non-Continuous Besov Spaces

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In Ben Slimane (Mediterr J Math, 13(4):1513–1533 (2016)), the second author proved that, generically in the Baire category sense, pairs of functions in \({B_{t_{1}}^{s_{1},\infty}(\mathbb{R}^m) \times B_{t_{2}}^{s_{2},\infty}(\mathbb{R}^m) }\), for \({s_{1} > \frac{m}{t_{1}}}\) and \({s_{2} > \frac{m}{t_{2}}}\), satisfy a mixed multifractal formalism based on wavelet leaders. In this paper, we extend this validity on \({(B_{t_{1}}^{s_{1},\infty}(\mathbb{R}^m) \cap C^{\gamma_{1}}(\mathbb{R}^m)) \times (B_{t_{2}}^{s_{2},\infty}(\mathbb{R}^m) \cap C^{\gamma_{2}}(\mathbb{R}^m)}\), for \({0 < \gamma_{1} < s_{1} < \frac{m}{t_{1}}}\) and \({0 < \gamma_{2} < s_{2} < \frac{m}{t_{2}}}\). The main change is that the wavelet coefficients of the saturating function which generates the residual \({G_\delta}\) set are not everywhere large enough and do not coincide everywhere with the wavelet leaders. Nevertheless, the computation of the wavelet leaders is done everywhere and allows to deduce both mixed spectra and mixed scaling function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abry, P., Goncalves, P., Levy-Vehel, J.: Lois dǃ©chelle, Fractales et ondelettes, vol. 1 and 2. Hermes, New Castle (2002)

  2. Arneodo A., Bacry E., Muzy J.-F.: Singularity spectrum of fractal signals from wavelet analysis: exact results. J. Stat. Phys. 70, 635–674 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arneodo A., Bacry E., Muzy J.-F.: The thermodynamics of fractals revisited with wavelets. Phys. A 213, 232–275 (1995)

    Article  MATH  Google Scholar 

  4. Arneodo, A., Audit, B., Decoster, N., Muzy, J.-F., Vaillant, C.: Wavelet-based multifractal formalism: applications to DNA sequences, satellite images of the cloud structure and stock market data. In: Bunde, A., Kropp, J., Schellnhuber, H.J. (eds.) The Science of Disasters, pp. 27–102. Springer, New York (2002)

  5. Barreira L., Saussol B.: Variational principles and mixed multifractal spectra. Trans. Am. Math. Soc. 353, 3919–3944 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barreira, L., Saussol, B., Schmeling, J.: Higher-dimensional multifractal analysis. J. Math. Pures Appl. (in press)

  7. Ben Abid M., Seuret S.: Hölder regularity of \({\mu}\)-similar functions. Const. Approx. 31(1), 69–93 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben Slimane M.: Formalisme multifractal pour quelques généralisations des fonctions autosimilaires. C. R. Acad. Sci. Paris Sér. I Math. 324, 981–986 (1997)

    Article  MathSciNet  Google Scholar 

  9. Ben Slimane M.: Multifractal formalism and anisotropic selfsimilar functions. Math. Proc. Camb. Philos. Soc. 124, 329–363 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ben Slimane M.: Multifractal formalism for selfsimilar functions under the action of nonlinear dynamical systems. Constr. Approx. 15, 209–240 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ben Slimane M.: Multifractal formalism for selfsimilar functions expanded in singular basis. Appl. Comput. Harmon. Anal. 11, 387–419 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ben Slimane M.: Some functional equations revisited: the multifractal properties. Integral Transforms Special Funct. 14, 333–348 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ben Slimane, M.: Baire typical results for mixed Hölder spectra on product of continuous Besov or oscillation spaces. Mediterr. J. Math. 13(4), 1513–1533 (2016)

  14. Ben Slimane M., Ben Braiek H.: Baire generic results for the anisotropic multifractal formalism. Rev. Mat. Complut. 29(1), 127–167 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chhabra A.B., Meneveau C., Jensen R.V., Sreenivasan K.R.: Direct determination of the \({f (\alpha)}\) singularity spectrum and its application to fully developed turbulence. Phys. Rev. A 40(9), 5284–5294 (1989)

    Article  Google Scholar 

  16. Daubechies I., Lagarias J.C.: On the thermodynamic formalism for functions. Rev. Math. Phys. 6, 1033–1070 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Toronto (1990)

  18. Fraysse A.: Generic validity of the multifractal formalism. SIAM J. Math. Anal. 37(2), 593–607 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frisch, U., Parisi, G.: Fully developped turbulence and intermittency. In: Fermi, E. (ed.) Proceedings of the International Summer School in Physics, pp. 84–88. North Holland, Amsterdam (1985)

  20. Halsey T., Jensen M., Kadanoff L., Procaccia I., Shraiman B.: Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141–1151 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jaffard S.: Multifractal formalism for functions. Part 1: Results valid for all functions and Part 2: Selfsimilar functions. SIAM J. Math. Anal. 28, 944–998 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jaffard S.: The multifractal nature of the Lévy processes. Probab. Theory Relat. Fields 114, 207–227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jaffard S.: The spectrum of singularities of Riemannų function. Rev. Mat. Iberoam. 12, 441–460 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jaffard S.: On the Frisch–Parisi conjecture. J. Math. Pures Appl. 79, 525–552 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jaffard, S.: Wavelet techniques in multifractal analysis. Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot. In: Lapidus, M., van Frankenhuijsen, M. (eds.) Proceedings of Symposia in Pure Mathematics, vol. 72. AMS, New York (2004) (Part 2, 91–152)

  26. Jaffard, S.: On Davenport expansions. Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot. In: Lapidus, M., van Frankenhuijsen, M. (eds.) Proceedings of Symposia in Pure Mathematics, vol. 72. AMS, New York (2004) (Part 1, pp. 273–303)

  27. Jaffard, S., Meyer, Y., Ryan, R.: Wavelets: Tools for Science and Technology. SIAM, Philadelphia (2001)

  28. Jaffard S.: Beyond Besov spaces, Part 2: Oscillation spaces. Constr. Approx. 21, 29–61 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Jaffard, S., Meyer, Y.: Wavelet methods for pointwise regularity and local oscillations of functions. Mem. Am. Math. Soc. 123(587) (1996)

  30. Kestener, P., Arneodo, A.: Generalizing the wavelet-based multifractal formalism to vector-valued random fields: application to turbulent velocity and vorticity 3D numerical data. Phys. Rev. Lett. 93(4) (2004)

  31. Mallat S., Hwang W.L.: Singularity detection and processing with wavelets. IEEE Trans. Inf. Theor. 38, 617–643 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mandelbrot B.: Intermittent turbulence in selfsimilar cascades: divergence of high moments and dimension of the carrier. J Fluid Mech. 62, 331–358 (1974)

    Article  MATH  Google Scholar 

  33. Mandelbrot, B.: Les Objets Fractals: Forme, Hasard et Dimension. Flammarian, Paris (1975)

  34. Mandelbrot, B.: The Fractal Geometry of Nature. W. H. Freeman, New York (1982)

  35. Meneveau C., Sreenivasan K.R.: The multifractal spectrum of the dissipation field in turbulent flows. Nuclear Phys. B 2, 49–76 (1987)

    Article  Google Scholar 

  36. Mélot C.: Oscillating singularities in Besov spaces. J. Math. Pures Appl. 83, 367–416 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Meyer, Y.: Ondelettes et opérateurs. Hermann, Paris (1990)

  38. Muzy, J.F., Arneodo, A., Bacry, E.: A multifractal formalism revisited with wavelets. Int. J. Bifurc. Chaos Appl. Sci. Eng. 4, 245 (1994)

  39. Olsen L.: Mixed generalized dimensions of self-similar measures. J. Math. Anal. Appl. 306, 516–539 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Olsen L.: Applications of multifractal divergence points to sets of numbers defined by their N-adic expansion. Math. Proc. Camb. Philos. Soc. 136, 139–165 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Olsen L.: Mixed divergence points of self-similar measures. Indiana Univ. Math. J. 52, 1343–1372 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Peyrière, J.: A vectorial multifractal formalism. In: Lapidus, M., van Frankenhuijsen, M. (eds.) Proceedings of Symposia in Pure Mathematics, vol. 72. AMS, New York 2004 (Part 2, 217–230)

  43. Sreenivasan K.R.: Fractals and multifractals in turbulence. Ann. Rev. Fluid Mech. 23, 539–600 (1991)

    Article  MathSciNet  Google Scholar 

  44. Triebel, H.: Theory of Function Spaces III. In: Monographs in Mathematics, vol. 78. Birkhäuser, Basel (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Ben Slimane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Abid, M., Ben Slimane, M. & Ben Omrane, I. Mixed Wavelet Leaders Multifractal Formalism for Baire Generic Functions in a Product of Intersections of Hölder Spaces with Non-Continuous Besov Spaces. Mediterr. J. Math. 13, 5093–5118 (2016). https://doi.org/10.1007/s00009-016-0794-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-016-0794-5

Mathematics Subject Classification

Keywords

Navigation