Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Semiclassical 3D gravity as an average of large-c CFTs

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 13 December 2022
  • volume 2022, Article number: 69 (2022)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Semiclassical 3D gravity as an average of large-c CFTs
Download PDF
  • Jeevan Chandra1,
  • Scott Collier  ORCID: orcid.org/0000-0002-8647-66532,
  • Thomas Hartman1 &
  • …
  • Alexander Maloney3 
  • 203 Accesses

  • 10 Citations

  • 6 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

A two-dimensional CFT dual to a semiclassical theory of gravity in three dimensions must have a large central charge c and a sparse low energy spectrum. This constrains the OPE coefficients and density of states of the CFT via the conformal bootstrap. We define an ensemble of CFT data by averaging over OPE coefficients subject to these bootstrap constraints, and show that calculations in this ensemble reproduce semiclassical 3D gravity. We analyze a wide variety of gravitational solutions, both in pure Einstein gravity and gravity coupled to massive point particles, including Euclidean wormholes with multiple boundaries and higher topology spacetimes with a single boundary. In all cases we find that the on-shell action of gravity agrees with the ensemble-averaged CFT at large c. The one-loop corrections also match in the cases where they have been computed. We also show that the bulk effective theory has random couplings induced by wormholes, providing a controlled, semiclassical realization of the mechanism of Coleman, Giddings, and Strominger.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].

  2. J.S. Cotler et al., Black holes and random matrices, JHEP 05 (2017) 118 [Erratum ibid. 09 (2018) 002] [arXiv:1611.04650] [INSPIRE].

  3. P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].

  4. P. Saad, Late time correlation functions, baby universes, and ETH in JT gravity, arXiv:1910.10311 [INSPIRE].

  5. J.M. Maldacena and L. Maoz, Wormholes in AdS, JHEP 02 (2004) 053 [hep-th/0401024] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Marolf and J.E. Santos, AdS Euclidean wormholes, Class. Quant. Grav. 38 (2021) 224002 [arXiv:2101.08875] [INSPIRE].

  7. J. Cotler and K. Jensen, AdS3 gravity and random CFT, JHEP 04 (2021) 033 [arXiv:2006.08648] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  8. J. Cotler and K. Jensen, Wormholes and black hole microstates in AdS/CFT, JHEP 09 (2021) 001 [arXiv:2104.00601] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. D. Marolf and H. Maxfield, Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information, JHEP 08 (2020) 044 [arXiv:2002.08950] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. H. Maxfield and G.J. Turiaci, The path integral of 3D gravity near extremality; or, JT gravity with defects as a matrix integral, JHEP 01 (2021) 118 [arXiv:2006.11317] [INSPIRE].

  11. A. Altland and J. Sonner, Late time physics of holographic quantum chaos, SciPost Phys. 11 (2021) 034 [arXiv:2008.02271] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. J. McNamara and C. Vafa, Baby universes, holography, and the swampland, arXiv:2004.06738 [INSPIRE].

  13. H. Verlinde, Wormholes in quantum mechanics, arXiv:2105.02129 [INSPIRE].

  14. P. Saad, S.H. Shenker, D. Stanford and S. Yao, Wormholes without averaging, arXiv:2103.16754 [INSPIRE].

  15. L. Eberhardt, Summing over geometries in string theory, JHEP 05 (2021) 233 [arXiv:2102.12355] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A. Altland, D. Bagrets, P. Nayak, J. Sonner and M. Vielma, From operator statistics to wormholes, Phys. Rev. Res. 3 (2021) 033259 [arXiv:2105.12129] [INSPIRE].

  17. J.J. Heckman, A.P. Turner and X. Yu, Disorder averaging and its UV discontents, Phys. Rev. D 105 (2022) 086021 [arXiv:2111.06404] [INSPIRE].

  18. P. Betzios, E. Kiritsis and O. Papadoulaki, Interacting systems and wormholes, JHEP 02 (2022) 126 [arXiv:2110.14655] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. S. Collier and E. Perlmutter, Harnessing S-duality in N = 4 SYM & supergravity as SL(2, Z)-averaged strings, JHEP 08 (2022) 195 [arXiv:2201.05093] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. J.-M. Schlenker and E. Witten, No ensemble averaging below the black hole threshold, JHEP 07 (2022) 143 [arXiv:2202.01372] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Z. Yang, The quantum gravity dynamics of near extremal black holes, JHEP 05 (2019) 205 [arXiv:1809.08647] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. A. Blommaert, Dissecting the ensemble in JT gravity, JHEP 09 (2022) 075 [arXiv:2006.13971] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. D. Stanford, More quantum noise from wormholes, arXiv:2008.08570 [INSPIRE].

  24. J. Pollack, M. Rozali, J. Sully and D. Wakeham, Eigenstate thermalization and disorder averaging in gravity, Phys. Rev. Lett. 125 (2020) 021601 [arXiv:2002.02971] [INSPIRE].

  25. A. Belin and J. de Boer, Random statistics of OPE coefficients and Euclidean wormholes, Class. Quant. Grav. 38 (2021) 164001 [arXiv:2006.05499] [INSPIRE].

  26. A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].

  28. J.M. Maldacena and A. Strominger, AdS3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  29. T. Hartman, C.A. Keller and B. Stoica, Universal spectrum of 2d conformal field theory in the large c limit, JHEP 09 (2014) 118 [arXiv:1405.5137] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. X. Yin, Partition functions of three-dimensional pure gravity, Commun. Num. Theor. Phys. 2 (2008) 285 [arXiv:0710.2129] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

  32. T. Faulkner, The entanglement Renyi entropies of disjoint intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].

  33. D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett. 115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].

  34. A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of long-distance AdS physics from the CFT bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic entanglement entropy from 2d CFT: heavy states and local quenches, JHEP 02 (2015) 171 [arXiv:1410.1392] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. P. Kraus and A. Maloney, A Cardy formula for three-point coefficients or how the black hole got its spots, JHEP 05 (2017) 160 [arXiv:1608.03284] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. P. Kraus, A. Maloney, H. Maxfield, G.S. Ng and J.-Q. Wu, Witten diagrams for torus conformal blocks, JHEP 09 (2017) 149 [arXiv:1706.00047] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. T. Anous, T. Hartman, A. Rovai and J. Sonner, Black hole collapse in the 1/c expansion, JHEP 07 (2016) 123 [arXiv:1603.04856] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. A. Maloney, H. Maxfield and G.S. Ng, A conformal block Farey tail, JHEP 06 (2017) 117 [arXiv:1609.02165] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. P. Kraus, A. Sivaramakrishnan and R. Snively, Black holes from CFT: universality of correlators at large c, JHEP 08 (2017) 084 [arXiv:1706.00771] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. P. Kraus and A. Sivaramakrishnan, Light-state dominance from the conformal bootstrap, JHEP 08 (2019) 013 [arXiv:1812.02226] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. J. Cardy, A. Maloney and H. Maxfield, A new handle on three-point coefficients: OPE asymptotics from genus two modular invariance, JHEP 10 (2017) 136 [arXiv:1705.05855] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. S. Collier, A. Maloney, H. Maxfield and I. Tsiares, Universal dynamics of heavy operators in CFT2, JHEP 07 (2020) 074 [arXiv:1912.00222] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. A. Belin, J. de Boer and D. Liska, Non-Gaussianities in the statistical distribution of heavy OPE coefficients and wormholes, JHEP 06 (2022) 116 [arXiv:2110.14649] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. A. Belin, J. de Boer, P. Nayak and J. Sonner, Generalized spectral form factors and the statistics of heavy operators, JHEP 11 (2022) 145 [arXiv:2111.06373] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. T. Anous, A. Belin, J. de Boer and D. Liska, OPE statistics from higher-point crossing, JHEP 06 (2022) 102 [arXiv:2112.09143] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. T. Hartman, D. Mazac, D. Simmons-Duffin and A. Zhiboedov, Snowmass white paper: the analytic conformal bootstrap, in 2022 Snowmass summer study, (2022) [arXiv:2202.11012] [INSPIRE].

  49. N. Benjamin, S. Collier, A.L. Fitzpatrick, A. Maloney and E. Perlmutter, Harmonic analysis of 2d CFT partition functions, JHEP 09 (2021) 174 [arXiv:2107.10744] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. P. Saad, S. Shenker and S. Yao, Comments on wormholes and factorization, arXiv:2107.13130 [INSPIRE].

  51. B. Mukhametzhanov, Half-wormholes in SYK with one time point, SciPost Phys. 12 (2022) 029 [arXiv:2105.08207] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. B. Mukhametzhanov, Factorization and complex couplings in SYK and in matrix models, arXiv:2110.06221 [INSPIRE].

  53. A. Blommaert, L.V. Iliesiu and J. Kruthoff, Gravity factorized, JHEP 09 (2022) 080 [arXiv:2111.07863] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. B. Michel, Universality in the OPE coefficients of holographic 2d CFTs, arXiv:1908.02873 [INSPIRE].

  56. D. Das, Y. Kusuki and S. Pal, Universality in asymptotic bounds and its saturation in 2D CFT, JHEP 04 (2021) 288 [arXiv:2011.02482] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  57. E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].

  58. Y. Kusuki, Light cone bootstrap in general 2D CFTs and entanglement from light cone singularity, JHEP 01 (2019) 025 [arXiv:1810.01335] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. S. Collier, Y. Gobeil, H. Maxfield and E. Perlmutter, Quantum Regge trajectories and the Virasoro analytic bootstrap, JHEP 05 (2019) 212 [arXiv:1811.05710] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. J.M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 (1991) 2046.

    Article  ADS  Google Scholar 

  61. M. Srednicki, Chaos and quantum thermalization, cond-mat/9403051 [INSPIRE].

  62. A. Belin, J. De Boer, P. Nayak and J. Sonner, Charged eigenstate thermalization, Euclidean wormholes and global symmetries in quantum gravity, SciPost Phys. 12 (2022) 059 [arXiv:2012.07875] [INSPIRE].

  63. N. Afkhami-Jeddi, H. Cohn, T. Hartman and A. Tajdini, Free partition functions and an averaged holographic duality, JHEP 01 (2021) 130 [arXiv:2006.04839] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. A. Maloney and E. Witten, Averaging over Narain moduli space, JHEP 10 (2020) 187 [arXiv:2006.04855] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. S.R. Coleman, Black holes as red herrings: topological fluctuations and the loss of quantum coherence, Nucl. Phys. B 307 (1988) 867 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  66. S.B. Giddings and A. Strominger, Axion induced topology change in quantum gravity and string theory, Nucl. Phys. B 306 (1988) 890 [INSPIRE].

    Article  ADS  Google Scholar 

  67. S.B. Giddings and A. Strominger, Loss of incoherence and determination of coupling constants in quantum gravity, Nucl. Phys. B 307 (1988) 854 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  68. D. Marolf and H. Maxfield, Observations of Hawking radiation: the Page curve and baby universes, JHEP 04 (2021) 272 [arXiv:2010.06602] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. A. Goel, L.V. Iliesiu, J. Kruthoff and Z. Yang, Classifying boundary conditions in JT gravity: from energy-branes to α-branes, JHEP 04 (2021) 069 [arXiv:2010.12592] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. E. Casali, D. Marolf, H. Maxfield and M. Rangamani, Baby universes and worldline field theories, Class. Quant. Grav. 39 (2022) 134004 [arXiv:2101.12221] [INSPIRE].

  71. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  73. M. Henneaux, W. Merbis and A. Ranjbar, Asymptotic dynamics of AdS3 gravity with two asymptotic regions, JHEP 03 (2020) 064 [arXiv:1912.09465] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  74. H. Dorn and H.J. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  76. H.L. Verlinde, Conformal field theory, 2D quantum gravity and quantization of Teichmüller space, Nucl. Phys. B 337 (1990) 652 [INSPIRE].

    Article  ADS  Google Scholar 

  77. S. Jackson, L. McGough and H. Verlinde, Conformal bootstrap, universality and gravitational scattering, Nucl. Phys. B 901 (2015) 382 [arXiv:1412.5205] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. J. Cotler and K. Jensen, A theory of reparameterizations for AdS3 gravity, JHEP 02 (2019) 079 [arXiv:1808.03263] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  79. L. Foini and J. Kurchan, Eigenstate thermalization hypothesis and out of time order correlators, Phys. Rev. E 99 (2019) 042139 [arXiv:1803.10658] [INSPIRE].

  80. C.A. Keller and A. Maloney, Poincaré series, 3D gravity and CFT spectroscopy, JHEP 02 (2015) 080 [arXiv:1407.6008] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  81. N. Benjamin, H. Ooguri, S.-H. Shao and Y. Wang, Light-cone modular bootstrap and pure gravity, Phys. Rev. D 100 (2019) 066029 [arXiv:1906.04184] [INSPIRE].

  82. N. Benjamin, S. Collier and A. Maloney, Pure gravity and conical defects, JHEP 09 (2020) 034 [arXiv:2004.14428] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. P.G. Zograf and L.A. Takhtadzhyan, On the Liouville equation, accessory parameters and the geometry of Teichmüller space for Riemann surfaces of genus 0, Math. U.S.S.R.-Sb. 60 (1988) 143.

    Article  MATH  Google Scholar 

  84. P.G. Zograf and L.A. Takhtadzhyan, On the uniformization of Riemann surfaces and on the Weil-Petersson metric on the Teichmüller and Schottky spaces, Math. U.S.S.R.-Sb. 60 (1988) 297.

    Article  MATH  Google Scholar 

  85. L. Takhtajan and P. Zograf, Hyperbolic 2-spheres with conical singularities, accessory parameters and Kähler metrics on M0,n, Trans. Amer. Math. Soc. 355 (2002) 1857.

  86. K. Krasnov, Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000) 929 [hep-th/0005106] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  87. L.A. Takhtajan and L.-P. Teo, Liouville action and Weil-Petersson metric on deformation spaces, global Kleinian reciprocity and holography, Commun. Math. Phys. 239 (2003) 183 [math.CV/0204318] [INSPIRE].

  88. D. Harlow, J. Maltz and E. Witten, Analytic continuation of Liouville theory, JHEP 12 (2011) 071 [arXiv:1108.4417] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. C.-M. Chang and Y.-H. Lin, Bootstrap, universality and horizons, JHEP 10 (2016) 068 [arXiv:1604.01774] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  90. K. Krasnov, 3D gravity, point particles and Liouville theory, Class. Quant. Grav. 18 (2001) 1291 [hep-th/0008253] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  91. X. Yin, On non-handlebody instantons in 3D gravity, JHEP 09 (2008) 120 [arXiv:0711.2803] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. H. Maxfield, S. Ross and B. Way, Holographic partition functions and phases for higher genus Riemann surfaces, Class. Quant. Grav. 33 (2016) 125018 [arXiv:1601.00980] [INSPIRE].

  94. K.K. Uhlenbeck, Closed minimal surfaces in hyperbolic 3-manifolds, in Seminar on minimal submanifolds, Ann. Math. Stud. 103 (1983) 147.

  95. K. Krasnov and J.-M. Schlenker, Minimal surfaces and particles in 3-manifolds, Geom. Dedicata 126 (2007) 187 [math.DG/0511441] [INSPIRE].

  96. C. Scarinci and K. Krasnov, The universal phase space of AdS3 gravity, Commun. Math. Phys. 322 (2013) 167 [arXiv:1111.6507] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  97. J. Kim and M. Porrati, On a canonical quantization of 3D anti de Sitter pure gravity, JHEP 10 (2015) 096 [arXiv:1508.03638] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. A. Garbarz, J. Kim and M. Porrati, Cylinder transition amplitudes in pure AdS3 gravity, JHEP 05 (2020) 147 [arXiv:2003.08955] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  99. C.T. McMullen, The moduli space of Riemann surfaces is Kähler hyperbolic, Ann. Math. 151 (2000) 327.

    Article  MathSciNet  MATH  Google Scholar 

  100. P.G. Zograf and L.A. Takhtadzhyan, Action of the Liouville equation is a generating function for the accessory parameters and the potential of the Weil-Petersson metric on the Teichmüller space, Funct. Anal. Appl. 19 (1986) 219 [Funkt. Anal. Pril. 19 (1985) 67].

  101. L. Takhtajan, Semi-classical Liouville theory, complex geometry of moduli spaces, and uniformization of Riemann surfaces, in New symmetry principles in quantum field theory (Cargèse, 1991), NATO Adv. Sci. Inst. B 295, Plenum, New York, U.S.A. (1992), p. 383.

  102. J. Park, L.A. Takhtajan and L.-P. Teo, Potentials and Chern forms for Weil-Petersson and Takhtajan-Zograf metrics on moduli spaces, Adv. Math. 305 (2017) 856.

    Article  MathSciNet  MATH  Google Scholar 

  103. S.B. Giddings and A. Strominger, Baby universes, third quantization and the cosmological constant, Nucl. Phys. B 321 (1989) 481 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  104. S.B. Giddings and A. Strominger, String wormholes, Phys. Lett. B 230 (1989) 46 [INSPIRE].

  105. A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  106. A.B. Zamolodchikov, Conformal symmetry in two-dimensional space: recursion representation of conformal block, Theor. Math. Phys. 73 (1987) 1088.

    Article  Google Scholar 

  107. E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS3 gravity, JHEP 12 (2015) 077 [arXiv:1508.04987] [INSPIRE].

    ADS  MATH  Google Scholar 

  108. T. Banks, Prolegomena to a theory of bifurcating universes: a nonlocal solution to the cosmological constant problem or little lambda goes back to the future, Nucl. Phys. B 309 (1988) 493 [INSPIRE].

    Article  ADS  Google Scholar 

  109. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, Replica wormholes and the entropy of Hawking radiation, JHEP 05 (2020) 013 [arXiv:1911.12333] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  110. G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, JHEP 03 (2022) 205 [arXiv:1911.11977] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  112. L. Hadasz, Z. Jaskolski and M. Piatek, Classical geometry from the quantum Liouville theory, Nucl. Phys. B 724 (2005) 529 [hep-th/0504204] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  113. L.A. Takhtajan and P. Zograf, Local index theorem for orbifold Riemann surfaces, Lett. Math. Phys. 109 (2018) 1119.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  114. S. Giombi, A. Maloney and X. Yin, One-loop partition functions of 3D gravity, JHEP 08 (2008) 007 [arXiv:0804.1773] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  115. E. D’Hoker and D.H. Phong, On determinants of Laplacians on Riemann surfaces, Commun. Math. Phys. 104 (1986) 537 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. P. Sarnak, Determinants of Laplacians, Commun. Math. Phys. 110 (1987) 113.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. A. Mcintyre and L.-P. Teo, Holomorphic factorization of determinants of Laplacians using quasi-Fuchsian uniformization, Lett. Math. Phys. 83 (2007) 41 [math.CV/0605605].

  118. Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

    Article  ADS  Google Scholar 

  119. A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics, Cornell University, 142 Sciences Drive, Ithaca, NY, 14853, USA

    Jeevan Chandra & Thomas Hartman

  2. Princeton Center for Theoretical Science, Princeton University, Washington Road, Princeton, NJ, 08544, USA

    Scott Collier

  3. Department of Physics, McGill University, 3600 rue University, Montréal, Canada

    Alexander Maloney

Authors
  1. Jeevan Chandra
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Scott Collier
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Thomas Hartman
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Alexander Maloney
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jeevan Chandra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2203.06511

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, J., Collier, S., Hartman, T. et al. Semiclassical 3D gravity as an average of large-c CFTs. J. High Energ. Phys. 2022, 69 (2022). https://doi.org/10.1007/JHEP12(2022)069

Download citation

  • Received: 03 August 2022

  • Revised: 19 November 2022

  • Accepted: 30 November 2022

  • Published: 13 December 2022

  • DOI: https://doi.org/10.1007/JHEP12(2022)069

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Field Theories in Lower Dimensions
  • Black Holes
  • Black Holes in String Theory

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature