Skip to main content
Log in

Quantum gravity partition functions in three dimensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider pure three-dimensional quantum gravity with a negative cosmological constant. The sum of known contributions to the partition function from classical geometries can be computed exactly, including quantum corrections. However, the result is not physically sensible, and if the model does exist, there are some additional contributions. One possibility is that the theory may have long strings and a continuous spectrum. Another possibility is that complex geometries need to be included, possibly leading to a holomorphically factorized partition function. We analyze the subleading corrections to the Bekenstein-Hawking entropy and show that these can be correctly reproduced in such a holomorphically factorized theory. We also consider the Hawking-Page phase transition between a thermal gas and a black hole and show that it is a phase transition of Lee-Yang type, associated with a condensation of zeros in the complex temperature plane. Finally, we analyze pure three-dimensional supergravity, with similar results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Deser and R. Jackiw, Three-dimensional cosmological gravity: dynamics of constant curvature, Annals Phys. 153 (1984) 405 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [SPIRES].

    ADS  Google Scholar 

  5. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  6. A. Strominger, Black hole entropy from near-horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Carlip, Conformal field theory, (2 + 1)-dimensional gravity and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. G.W. Gibbons, S.W. Hawking and M.J. Perry, Path integrals and the indefiniteness of the gravitational action, Nucl. Phys. B 138 (1978) 141 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A black hole Farey tail, hep-th/0005003 [SPIRES].

  11. D.B. Ray and I.M. Singer, Analytic torsion for complex manifolds, Annals Math. 98 (1973) 154 [SPIRES].

    Article  MathSciNet  Google Scholar 

  12. X. Yin, Partition functions of three-dimensional pure gravity, arXiv:0710.2129 [SPIRES].

  13. E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [SPIRES].

  14. J. Manschot, AdS 3 partition functions reconstructed, JHEP 10 (2007) 103 [arXiv:0707.1159] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. S.W. Hawking and D.N. Page, Thermodynamics of black holes in Anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. S. Carlip and C. Teitelboim, Aspects of black hole quantum mechanics and thermodynamics in (2 + 1)-dimensions, Phys. Rev. D 51 (1995) 622 [gr-qc/9405070] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. S. Deser, R. Jackiw and G. ’t Hooft, Three-dimensional einstein gravity: dynamics of flat space, Ann. Phys. 152 (1984) 220 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional Anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. E. Witten, Coadjoint orbits of the Virasoro group, Commun. Math. Phys. 114 (1988) 1 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. A.A. Bytsenko, L. Vanzo and S. Zerbini, Quantum correction to the entropy of the (2+1)-dimensional black hole, Phys. Rev. D 57 (1998) 4917 [gr-qc/9710106] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. H. Iwaniec, Spectral methods of automorphic forms, American Mathematical Society, U.S.A. (2002).

    MATH  Google Scholar 

  23. M. Kleban, M. Porrati and R. Rabadán, Poincaré recurrences and topological diversity, JHEP 10 (2004) 030 [hep-th/0407192] [SPIRES].

    Article  ADS  Google Scholar 

  24. J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017 [hep-th/9903224] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. K. Krasnov, On holomorphic factorization in asymptotically AdS 3D gravity, Class. Quant. Grav. 20 (2003) 4015 [hep-th/0109198] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. G. Höhn, Selbstduale Vertexoperatorsuperalgebrenund das Babymonster, Ph.D. thesis, University of Bonn, Bonn ,Germany 1995), Bonner Mathematische Schriften volume 286 (1996) 1, English translation, arXiv:0706.0236.

  28. D. Gaiotto and X. Yin, Genus two partition functions of extremal conformal field theories, JHEP 08 (2007) 029 [arXiv:0707.3437] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. X. Yin, Partition functions of three-dimensional pure gravity, arXiv:0710.2129 [SPIRES].

  30. M.R. Gaberdiel, Constraints on extremal self-dual CFTs, JHEP 11 (2007) 087 [arXiv:0707.4073] [SPIRES].

    ADS  Google Scholar 

  31. D. Gaiotto, to appear.

  32. I.B. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the monster, Academic Press, Boston, Boston U.S.A. (1988).

    MATH  Google Scholar 

  33. S. Carlip, Logarithmic corrections to black hole entropy from the Cardy formula, Class. Quant. Grav. 17 (2000) 4175 [gr-qc/0005017] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. C.N. Yang and T.-D. Lee, Statistical theory of equations of state and phase transitions. I. Theory of condensation, Phys. Rev. 87 (1952) 404 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. M. Fisher, The nature of critical points, in Lectures in theoretical physics volume VII C, University of Colorado Press, Boulder U.S.A. (1965).

    Google Scholar 

  36. R. Rankin, The zeros of certain Poincaré series, Compos. Math. 46 (1982) 255.

    MATH  MathSciNet  Google Scholar 

  37. T. Asai, M. Kaneko and H. Ninomiya, Zeros of certain modular functions and an application, Commentarii Math. Univ. Sancti Pauli 46 (1997) 93.

    MATH  MathSciNet  Google Scholar 

  38. J.D. Bekenstein, A universal upper bound on the entropy to energy ratio for bounded systems, Phys. Rev. D 23 (1981) 287 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. T. Apostol, Modular functions and Dirichlet series in number theory, Springer Verlag, Germany (1990).

    MATH  Google Scholar 

  40. M. Kaneko, private communication.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Maloney.

Additional information

ArXiv ePrint: 0712.0155

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maloney, A., Witten, E. Quantum gravity partition functions in three dimensions. J. High Energ. Phys. 2010, 29 (2010). https://doi.org/10.1007/JHEP02(2010)029

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2010)029

Keywords

Navigation