Skip to main content
Log in

Convexity and liberation at large spin

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider several aspects of unitary higher-dimensional conformal field theories (CFTs). We first study massive deformations that trigger a flow to a gapped phase. Deep inelastic scattering in the gapped phase leads to a convexity property of dimensions of spinning operators of the original CFT. We further investigate the dimensions of spinning operators via the crossing equations in the light-cone limit. We find that, in a sense, CFTs become free at large spin and 1/s is a weak coupling parameter. The spectrum of CFTs enjoys additivity: if two twists τ 1, τ 2 appear in the spectrum, there are operators whose twists are arbitrarily close to τ 1 + τ 2. We characterize how τ 1 + τ 2 is approached at large spin by solving the crossing equations analytically. We find the precise form of the leading correction, including the prefactor. We compare with examples where these observables were computed in perturbation theory, or via gauge-gravity duality, and find complete agreement. The crossing equations show that certain operators have a convex spectrum in twist space. We also observe a connection between convexity and the ratio of dimension to charge. Applications include the 3d Ising model, theories with a gravity dual, SCFTs, and patterns of higher spin symmetry breaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Polyakov, Conformal symmetry of critical fluctuations, JETP Lett. 12 (1970) 381 [Pisma Zh. Eksp. Teor. Fiz. 12 (1970) 538] [INSPIRE].

  2. I. Antoniadis and M. Buican, On R-symmetric fixed points and superconformality, Phys. Rev. D 83 (2011) 105011 [arXiv:1102.2294] [INSPIRE].

    ADS  Google Scholar 

  3. M.A. Luty, J. Polchinski and R. Rattazzi, The a-theorem and the asymptotics of 4D quantum field theory, JHEP 01 (2013) 152 [arXiv:1204.5221] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. J.-F. Fortin, B. Grinstein and A. Stergiou, Limit cycles in four dimensions, JHEP 12 (2012) 112 [arXiv:1206.2921] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. J.-F. Fortin, B. Grinstein and A. Stergiou, Limit cycles and conformal invariance, JHEP 01 (2013) 184 [arXiv:1208.3674] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. Y. Nakayama, Supercurrent, supervirial and superimprovement, Phys. Rev. D 87 (2013) 085005 [arXiv:1208.4726] [INSPIRE].

    ADS  Google Scholar 

  7. J.-F. Fortin, B. Grinstein, C.W. Murphy and A. Stergiou, On limit cycles in supersymmetric theories, Phys. Lett. B 719 (2013) 170 [arXiv:1210.2718] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. Y. Nakayama, Is boundary conformal in CFT?, Phys. Rev. D 87 (2013) 046005 [arXiv:1210.6439] [INSPIRE].

    ADS  Google Scholar 

  9. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  10. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  12. G. Mack, All unitary ray representations of the conformal group SU(2,2) with positive energy, Commun. Math. Phys. 55 (1977) 1 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. B. Grinstein, K.A. Intriligator and I.Z. Rothstein, Comments on unparticles, Phys. Lett. B 662 (2008) 367 [arXiv:0801.1140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. T. Pham and T.N. Truong, Evaluation of the derivative quartic terms of the meson chiral Lagrangian from forward dispersion relation, Phys. Rev. D 31 (1985) 3027 [INSPIRE].

    ADS  Google Scholar 

  15. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. Z. Komargodski, The constraints of conformal symmetry on RG flows, JHEP 07 (2012) 069 [arXiv:1112.4538] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. V. Braun, G. Korchemsky and D. Mueller, The uses of conformal symmetry in QCD, Prog. Part. Nucl. Phys. 51 (2003) 311 [hep-ph/0306057] [INSPIRE].

  19. O. Nachtmann, Positivity constraints for anomalous dimensions, Nucl. Phys. B 63 (1973) 237 [INSPIRE].

    Article  ADS  Google Scholar 

  20. H. Epstein, V. Glaser and A. Martin, Polynomial behaviour of scattering amplitudes at fixed momentum transfer in theories with local observables, Commun. Math. Phys. 13 (1969) 257 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. S.B. Giddings and R.A. Porto, The gravitational S-matrix, Phys. Rev. D 81 (2010) 025002 [arXiv:0908.0004] [INSPIRE].

    ADS  Google Scholar 

  22. S. Ferrara, A. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 66 (1974) 23 [INSPIRE].

    MathSciNet  Google Scholar 

  24. A. Belavin, A.M. Polyakov and A. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].

    ADS  Google Scholar 

  27. D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE convergence in conformal field theory, Phys. Rev. D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].

    ADS  Google Scholar 

  28. L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in AdS/CFT: from shock waves to four-point functions, JHEP 08 (2007) 019 [hep-th/0611122] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in AdS/CFT: conformal partial waves and finite N four-point functions, Nucl. Phys. B 767 (2007) 327 [hep-th/0611123] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: resumming the gravitational loop expansion, JHEP 09 (2007) 037 [arXiv:0707.0120] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007) 019 [arXiv:0708.0672] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rept. 368 (2002) 549 [cond-mat/0012164] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. M.A. Vasiliev, Higher spin gauge theories: star product and AdS space, in The many faces of the superworld, M.A. Shifman ed., World Scientific, Singapore (1999), pg. 533 [hep-th/9910096] [INSPIRE].

  34. A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, arXiv:1212.3616 [INSPIRE].

  35. M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev. 123 (1961) 1053 [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Martin, Unitarity and high-energy behavior of scattering amplitudes, Phys. Rev. 129 (1963) 1432 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. L. Frankfurt, M. Strikman and C. Weiss, Small-x physics: from HERA to LHC and beyond, Ann. Rev. Nucl. Part. Sci. 55 (2005) 403 [hep-ph/0507286] [INSPIRE].

    Article  ADS  Google Scholar 

  38. J. Polchinski and M.J. Strassler, Deep inelastic scattering and gauge/string duality, JHEP 05 (2003) 012 [hep-th/0209211] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. C.G. Callan Jr. and D.J. Gross, Bjorken scaling in quantum field theory, Phys. Rev. D 8 (1973) 4383 [INSPIRE].

    ADS  Google Scholar 

  40. S.E. Derkachov and A. Manashov, Generic scaling relation in the scalar ϕ 4 model, J. Phys. A 29 (1996) 8011 [hep-th/9604173] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. S.K. Kehrein, The spectrum of critical exponents in \( {{\overrightarrow{\phi}}^2} \) in two-dimensions theory in d = (4 − ϵ)-dimensions: resolution of degeneracies and hierarchical structures, Nucl. Phys. B 453 (1995) 777 [hep-th/9507044] [INSPIRE].

    Article  ADS  Google Scholar 

  42. F. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE].

  43. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. H. Osborn, Conformal blocks for arbitrary spins in two dimensions, Phys. Lett. B 718 (2012) 169 [arXiv:1205.1941] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation functions to Wilson loops, JHEP 09 (2011) 123 [arXiv:1007.3243] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. P. Kovtun and A. Ritz, Black holes and universality classes of critical points, Phys. Rev. Lett. 100 (2008) 171606 [arXiv:0801.2785] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. L. Hoffmann, L. Mesref and W. Rühl, Conformal partial wave analysis of AdS amplitudes for dilaton axion four point functions, Nucl. Phys. B 608 (2001) 177 [hep-th/0012153] [INSPIRE].

    Article  ADS  Google Scholar 

  48. F. Dolan and H. Osborn, Superconformal symmetry, correlation functions and the operator product expansion, Nucl. Phys. B 629 (2002) 3 [hep-th/0112251] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. P. Heslop, Aspects of superconformal field theories in six dimensions, JHEP 07 (2004) 056 [hep-th/0405245] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. P. Liendo, L. Rastelli and B.C. van Rees, The bootstrap program for boundary CFT d , JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].

    Article  ADS  Google Scholar 

  51. E. Barnes, E. Gorbatov, K.A. Intriligator, M. Sudano and J. Wright, The exact superconformal R-symmetry minimizes τ RR , Nucl. Phys. B 730 (2005) 210 [hep-th/0507137] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. K. Wilson and J.B. Kogut, The renormalization group and the ϵ-expansion, Phys. Rept. 12 (1974) 75 [INSPIRE].

    Article  ADS  Google Scholar 

  53. K. Lang and W. Rühl, Critical O(N) vector nonlinear σ-models: a resume of their field structure, hep-th/9311046 [INSPIRE].

  54. K. Lang and W. Rühl, The critical O(N) σ-model at dimensions 2 < d < 4: fusion coefficients and anomalous dimensions, Nucl. Phys. B 400 (1993) 597 [INSPIRE].

    Article  ADS  Google Scholar 

  55. I. Klebanov and A. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

  57. S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. V. Didenko and E. Skvortsov, Exact higher-spin symmetry in CFT: all correlators in unbroken Vasiliev theory, arXiv:1210.7963 [INSPIRE].

  60. S. Giombi et al., Chern-Simons theory with vector fermion matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].

    Article  ADS  Google Scholar 

  61. O. Aharony, G. Gur-Ari and R. Yacoby, D = 3 bosonic vector models coupled to Chern-Simons gauge theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. S. Ferrara, C. Fronsdal and A. Zaffaroni, On N = 8 supergravity on AdS 5 and N = 4 superconformal Yang-Mills theory, Nucl. Phys. B 532 (1998) 153 [hep-th/9802203] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].

    Article  ADS  Google Scholar 

  66. F. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal blocks, JHEP 11 (2011) 154 [arXiv:1109.6321] [INSPIRE].

    Article  ADS  Google Scholar 

  68. A.L. Fitzpatrick and J. Kaplan, Unitarity and the holographic S-matrix, JHEP 10 (2012) 032 [arXiv:1112.4845] [INSPIRE].

    Article  ADS  Google Scholar 

  69. D. Poland and D. Simmons-Duffin, Bounds on 4D conformal and superconformal field theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. D. Kazakov, The method of uniqueness, a new powerful technique for multiloop calculations, Phys. Lett. B 133 (1983) 406 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohar Komargodski.

Additional information

ArXiv ePrint: 1212.4103

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komargodski, Z., Zhiboedov, A. Convexity and liberation at large spin. J. High Energ. Phys. 2013, 140 (2013). https://doi.org/10.1007/JHEP11(2013)140

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)140

Keywords

Navigation