M.S. Viazovska, The sphere packing problem in dimension 8, Ann. Math.185 (2017) 991 [arXiv:1603.04246].
MathSciNet
MATH
Article
Google Scholar
H. Cohn et al., The sphere packing problem in dimension 24, Ann. Math.185 (2017) 1017 [arXiv:1603.06518].
MathSciNet
MATH
Article
Google Scholar
N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Hellerman, A universal inequality for CFT and quantum gravity, JHEP08 (2011) 130 [arXiv:0902.2790] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
D. Friedan and C.A. Keller, Constraints on 2d CFT partition functions, JHEP10 (2013) 180 [arXiv:1307.6562] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
S. Collier, Y.-H. Lin and X. Yin, Modular bootstrap revisited, JHEP09 (2018) 061 [arXiv:1608.06241] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
N. Afkhami-Jeddi, T. Hartman and A. Tajdini, Fast conformal bootstrap and constraints on 3D gravity, JHEP05 (2019) 087 [arXiv:1903.06272] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
J.H. Conway, N.J.A. Sloane and E. Bannai, Sphere-packings, lattices, and groups, Springer, Berlin Germany (1987).
Google Scholar
T.C. Hales, A proof of the Kepler conjecture, Ann. Math.162 (2005) 1065.
MathSciNet
MATH
Article
Google Scholar
T. Hales et al., A formal proof of the Kepler conjecture, in Forum of mathematics, Pi, volume 5, Cambridge University Press, Cambridge (2017).
Google Scholar
H. Cohn and N. Elkies, New upper bounds on sphere packings I, Ann. Math.157 (2003) 689 [math/0110009
MathSciNet
MATH
Article
Google Scholar
H. Cohn, New upper bounds on sphere packings II, Geom. Topol.6 (2002) 329.
MathSciNet
MATH
Article
Google Scholar
D. Mazac, Analytic bounds and emergence of AdS
2physics from the conformal bootstrap, JHEP04 (2017) 146 [arXiv:1611.10060] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part I: 1D CFTs and 2D S-matrices, JHEP02 (2019) 162 [arXiv:1803.10233] [INSPIRE].
D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part II. Natural bases for the crossing equation, JHEP02 (2019) 163 [arXiv:1811.10646] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D. Mazáč, A crossing-symmetric OPE inversion formula, JHEP06 (2019) 082 [arXiv:1812.02254] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
D. Mazáč, L. Rastelli and X. Zhou, An analytic approach to BCFT
d , arXiv:1812.09314 [INSPIRE].
A. Kaviraj and M.F. Paulos, The functional bootstrap for boundary CFT, arXiv:1812.04034 [INSPIRE].
H. Cohn et al., Universal optimality of the E8 and Leech lattices and interpolation formulas, arXiv:1902.05438.
J.D. Bekenstein, Universal upper bound on the entropy-to-energy ratio for bounded systems, Phys. Rev.D 23 (1981) 287.
P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP09 (2007) 120 [arXiv:0708.4025] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
Y. Sekino and L. Susskind, Fast scramblers, JHEP10 (2008) 065 [arXiv:0808.2096] [INSPIRE].
ADS
Article
Google Scholar
J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP08 (2016) 106 [arXiv:1503.01409] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys.64 (2016) 44 [arXiv:1403.5695] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
G. Höhn, Selbstduale vertexoperatorsuperalgebren und das babymonster (self-dual vertex operator super algebras and the baby monster), arXiv:0706.0236.
G. Höhn, Conformal designs based on vertex operator algebras, Adv. Math.217 (2008) 2301.
MathSciNet
MATH
Article
Google Scholar
E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].
R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
T. Hartman, C.A. Keller and B. Stoica, Universal spectrum of 2d conformal field theory in the large c limit, JHEP09 (2014) 118 [arXiv:1405.5137] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
C.A. Keller and H. Ooguri, Modular constraints on Calabi-Yau compactifications, Commun. Math. Phys.324 (2013) 107 [arXiv:1209.4649] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
J.D. Qualls and A.D. Shapere, Bounds on operator dimensions in 2D conformal field theories, JHEP05 (2014) 091 [arXiv:1312.0038] [INSPIRE].
ADS
Article
Google Scholar
J.D. Qualls, Universal bounds in even-spin CFTs, JHEP12 (2015) 001 [arXiv:1412.0383] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
N. Benjamin, E. Dyer, A.L. Fitzpatrick and S. Kachru, Universal bounds on charged states in 2d CFT and 3d gravity, JHEP08 (2016) 041 [arXiv:1603.09745] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
M. Ashrafi and F. Loran, Non-chiral 2d CFT with integer energy levels, JHEP09 (2016) 121 [arXiv:1607.08516] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
M. Cho, S. Collier and X. Yin, Genus two modular bootstrap, JHEP04 (2019) 022 [arXiv:1705.05865] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
E. Dyer, A.L. Fitzpatrick and Y. Xin, Constraints on flavored 2d CFT partition functions, JHEP02 (2018) 148 [arXiv:1709.01533] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
A. Belin, A. Castro, J. Gomes and C.A. Keller, Siegel paramodular forms and sparseness in AdS
3/CFT
2 , JHEP11 (2018) 037 [arXiv:1805.09336] [INSPIRE].
ADS
MATH
Article
Google Scholar
T. Anous, R. Mahajan and E. Shaghoulian, Parity and the modular bootstrap, SciPost Phys.5 (2018) 022 [arXiv:1803.04938] [INSPIRE].
ADS
Article
Google Scholar
J.-B. Bae, S. Lee and J. Song, Modular constraints on superconformal field theories, JHEP01 (2019) 209 [arXiv:1811.00976] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
Y.-H. Lin and S.-H. Shao, Anomalies and bounds on charged operators, Phys. Rev.D 100 (2019) 025013 [arXiv:1904.04833] [INSPIRE].
A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP02 (2010) 029 [arXiv:0712.0155] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
C.A. Keller and A. Maloney, Poincaŕe series, 3D gravity and CFT spectroscopy, JHEP02 (2015) 080 [arXiv:1407.6008] [INSPIRE].
ADS
MATH
Article
Google Scholar
N. Afkhami-Jeddi et al., Constraints on higher spin CFT2 , JHEP05 (2018) 092 [arXiv:1707.07717] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.-B. Bae, S. Lee and J. Song, Modular constraints on conformal field theories with currents, JHEP12 (2017) 045 [arXiv:1708.08815] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
I.B. Frenkel, J. Lepowsky and A. Meurman, A natural representation of the Fischer-Griess Monster with the modular function j as character, Proc. Natl. Acad. Sci.81 (1984) 3256.
ADS
MathSciNet
MATH
Article
Google Scholar
T. M. Thompson, From error-correcting codes through sphere packings to simple groups, Cambridge University Press, Cambridge U.K. (1983).
MATH
Book
Google Scholar
H. Cohn, A conceptual breakthrough in sphere packing, Not. AMS64 (2017) 102 [arXiv:1611.01685].
MathSciNet
MATH
Google Scholar
D. de Laat and F. Vallentin, A breakthrough in sphere packing: the search for magic functions, arXiv:1607.02111.
G.F. Tóth, Packing and covering, in Handbook of discrete and computational geometry, J. Goodman, J. O’Rourke and C.D.Tóth eds., CRC Press, Boca Raton, U.S.A., (2017), chapter 2.
E. Hlawka, Zur geometrie der zahlen, Math. Zeit.49 (1943) 285.
MathSciNet
MATH
Article
Google Scholar
H.F. Blichfeldt, The minimum value of quadratic forms, and the closest packing of spheres,” Math. Ann.101 (1929) 605.
G.A. Kabatiansky and V.I. Levenshtein, On bounds for packings on a sphere and in space, Probl. Pered. Inf.14 (1978) 3.
MathSciNet
Google Scholar
H. Cohn et al., Sphere packing bounds via spherical codes, Duke Math. J.163 (2014) 1965.
MathSciNet
MATH
Article
Google Scholar
P. Delsarte, Bounds for unrestricted codes, by linear programming, Philips Res. Rep.27 (1972) 272.
MathSciNet
MATH
Google Scholar
D.V. Gorbachev, Extremal problem for entire functions of exponential spherical type, connected with the levenshtein bound on the sphere packing density in r
n (in Russian), Izv. Tula State Univ. Ser. Math. Mech. Inf.6 (2000) 71
A.M. Odlyzko and N.J. Sloane, A theta-function identity for nonlattice packings, Stud. Sci. Math. Hung15 (1980) 461.
MathSciNet
MATH
Google Scholar
J. Qiao and S. Rychkov, Cut-touching linear functionals in the conformal bootstrap, JHEP06 (2017) 076 [arXiv:1705.01357] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
M. Viazovska, Sharp sphere packings, in the proceedings of the International Congress of Mathematicians, August 1–9, Rio de Janeiro, Brazil (2018).
D. de Laat and F. Vallentin, A semidefinite programming hierarchy for packing problems in discrete geometry, Math. Prog.151 (2015) 529.
MathSciNet
MATH
Article
Google Scholar
H. Cohn and A. Kumar, Optimality and uniqueness of the Leech lattice among lattices, Ann. Math.170 (2009) 1003.
MathSciNet
MATH
Article
Google Scholar
S. Torquato and F.H. Stillinger, New conjectural lower bounds on the optimal density of sphere packings, Exp. Math.15 (2006) 307.
MathSciNet
MATH
Article
Google Scholar
O. Lunin and S.D. Mathur, Correlation functions for M
N/S(N ) orbifolds, Commun. Math. Phys.219 (2001) 399 [hep-th/0006196] [INSPIRE].
ADS
MATH
Article
Google Scholar
T. Hartman, S. Jain and S. Kundu, Causality constraints in conformal field theory, JHEP05 (2016) 099 [arXiv:1509.00014] [INSPIRE].
ADS
Article
Google Scholar
S. Caron-Huot, Analyticity in spin in conformal theories, JHEP09 (2017) 078 [arXiv:1703.00278] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP12 (2012) 091 [arXiv:1209.4355] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP01 (2017) 013 [arXiv:1509.03612] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
B. Mukhametzhanov and A. Zhiboedov, Modular invariance, tauberian theorems and microcanonical entropy, JHEP10 (2019) 261 [arXiv:1904.06359] [INSPIRE].
ADS
Article
Google Scholar
C. Zong, Sphere packings, Springer, Germany (2008).
Google Scholar
V. Levenshtein, Bounds for packings in n-dimensional Euclidean space, Sov. Math. Dokl.20 (1979) 417.
MATH
Google Scholar
G. Parisi and F. Zamponi, Amorphous packings of hard spheres for large space dimension, J. Stat. Mech.03 (2006) P03017.
MathSciNet
MATH
Google Scholar
G. Parisi and F. Zamponi, Mean-field theory of hard sphere glasses and jamming, Rev. Mod. Phys.82 (2010) 789.
ADS
Article
Google Scholar
P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP11 (2018) 102 [arXiv:1805.00098] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
Z. Komargodski and A. Zhiboedov, Convexity and Liberation at large spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE].
ADS
Article
Google Scholar
B. Mukhametzhanov and A. Zhiboedov, Analytic euclidean bootstrap, JHEP10 (2019) 270 [arXiv:1808.03212] [INSPIRE].
ADS
Article
Google Scholar
D. Zagier, Elliptic modular forms and their applications, in The 1-2-3 of modular forms, D. Zeiger ed., Springer, Germany (2008).