Skip to main content

Sphere packing and quantum gravity

A preprint version of the article is available at arXiv.

Abstract

We establish a precise relation between the modular bootstrap, used to con- strain the spectrum of 2D CFTs, and the sphere packing problem in Euclidean geometry. The modular bootstrap bound for chiral algebra U(1)c maps exactly to the Cohn-Elkies linear programming bound on the sphere packing density in d = 2c dimensions. We also show that the analytic functionals developed earlier for the correlator conformal bootstrap can be adapted to this context. For c = 4 and c = 12, these functionals exactly repro- duce the “magic functions” used recently by Viazovska [1] and Cohn et al. [2] to solve the sphere packing problem in dimensions 8 and 24. The same functionals are also applied to general 2D CFTs, with only Virasoro symmetry. In the limit of large central charge, we relate sphere packing to bounds on the black hole spectrum in 3D quantum gravity, and prove analytically that any such theory must have a nontrivial primary state of dimension \( {\Delta}_0\underset{\sim }{<}c/\mathrm{8.503.} \)

References

  1. M.S. Viazovska, The sphere packing problem in dimension 8, Ann. Math.185 (2017) 991 [arXiv:1603.04246].

    MathSciNet  MATH  Article  Google Scholar 

  2. H. Cohn et al., The sphere packing problem in dimension 24, Ann. Math.185 (2017) 1017 [arXiv:1603.06518].

    MathSciNet  MATH  Article  Google Scholar 

  3. N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. S. Hellerman, A universal inequality for CFT and quantum gravity, JHEP08 (2011) 130 [arXiv:0902.2790] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  5. D. Friedan and C.A. Keller, Constraints on 2d CFT partition functions, JHEP10 (2013) 180 [arXiv:1307.6562] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  6. S. Collier, Y.-H. Lin and X. Yin, Modular bootstrap revisited, JHEP09 (2018) 061 [arXiv:1608.06241] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  7. N. Afkhami-Jeddi, T. Hartman and A. Tajdini, Fast conformal bootstrap and constraints on 3D gravity, JHEP05 (2019) 087 [arXiv:1903.06272] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  8. J.H. Conway, N.J.A. Sloane and E. Bannai, Sphere-packings, lattices, and groups, Springer, Berlin Germany (1987).

    Google Scholar 

  9. T.C. Hales, A proof of the Kepler conjecture, Ann. Math.162 (2005) 1065.

    MathSciNet  MATH  Article  Google Scholar 

  10. T. Hales et al., A formal proof of the Kepler conjecture, in Forum of mathematics, Pi, volume 5, Cambridge University Press, Cambridge (2017).

    Google Scholar 

  11. H. Cohn and N. Elkies, New upper bounds on sphere packings I, Ann. Math.157 (2003) 689 [math/0110009

    MathSciNet  MATH  Article  Google Scholar 

  12. H. Cohn, New upper bounds on sphere packings II, Geom. Topol.6 (2002) 329.

    MathSciNet  MATH  Article  Google Scholar 

  13. D. Mazac, Analytic bounds and emergence of AdS 2physics from the conformal bootstrap, JHEP04 (2017) 146 [arXiv:1611.10060] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  14. D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part I: 1D CFTs and 2D S-matrices, JHEP02 (2019) 162 [arXiv:1803.10233] [INSPIRE].

  15. D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part II. Natural bases for the crossing equation, JHEP02 (2019) 163 [arXiv:1811.10646] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. D. Mazáč, A crossing-symmetric OPE inversion formula, JHEP06 (2019) 082 [arXiv:1812.02254] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. D. Mazáč, L. Rastelli and X. Zhou, An analytic approach to BCFT d , arXiv:1812.09314 [INSPIRE].

  18. A. Kaviraj and M.F. Paulos, The functional bootstrap for boundary CFT, arXiv:1812.04034 [INSPIRE].

  19. H. Cohn et al., Universal optimality of the E8 and Leech lattices and interpolation formulas, arXiv:1902.05438.

  20. J.D. Bekenstein, Universal upper bound on the entropy-to-energy ratio for bounded systems, Phys. Rev.D 23 (1981) 287.

  21. P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. Y. Sekino and L. Susskind, Fast scramblers, JHEP10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    ADS  Article  Google Scholar 

  23. J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  24. L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys.64 (2016) 44 [arXiv:1403.5695] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  25. G. Höhn, Selbstduale vertexoperatorsuperalgebren und das babymonster (self-dual vertex operator super algebras and the baby monster), arXiv:0706.0236.

  26. G. Höhn, Conformal designs based on vertex operator algebras, Adv. Math.217 (2008) 2301.

    MathSciNet  MATH  Article  Google Scholar 

  27. E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].

  28. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  29. T. Hartman, C.A. Keller and B. Stoica, Universal spectrum of 2d conformal field theory in the large c limit, JHEP09 (2014) 118 [arXiv:1405.5137] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  30. C.A. Keller and H. Ooguri, Modular constraints on Calabi-Yau compactifications, Commun. Math. Phys.324 (2013) 107 [arXiv:1209.4649] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. J.D. Qualls and A.D. Shapere, Bounds on operator dimensions in 2D conformal field theories, JHEP05 (2014) 091 [arXiv:1312.0038] [INSPIRE].

    ADS  Article  Google Scholar 

  32. J.D. Qualls, Universal bounds in even-spin CFTs, JHEP12 (2015) 001 [arXiv:1412.0383] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  33. N. Benjamin, E. Dyer, A.L. Fitzpatrick and S. Kachru, Universal bounds on charged states in 2d CFT and 3d gravity, JHEP08 (2016) 041 [arXiv:1603.09745] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  34. M. Ashrafi and F. Loran, Non-chiral 2d CFT with integer energy levels, JHEP09 (2016) 121 [arXiv:1607.08516] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. M. Cho, S. Collier and X. Yin, Genus two modular bootstrap, JHEP04 (2019) 022 [arXiv:1705.05865] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  36. E. Dyer, A.L. Fitzpatrick and Y. Xin, Constraints on flavored 2d CFT partition functions, JHEP02 (2018) 148 [arXiv:1709.01533] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  37. A. Belin, A. Castro, J. Gomes and C.A. Keller, Siegel paramodular forms and sparseness in AdS 3/CFT 2 , JHEP11 (2018) 037 [arXiv:1805.09336] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  38. T. Anous, R. Mahajan and E. Shaghoulian, Parity and the modular bootstrap, SciPost Phys.5 (2018) 022 [arXiv:1803.04938] [INSPIRE].

    ADS  Article  Google Scholar 

  39. J.-B. Bae, S. Lee and J. Song, Modular constraints on superconformal field theories, JHEP01 (2019) 209 [arXiv:1811.00976] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  40. Y.-H. Lin and S.-H. Shao, Anomalies and bounds on charged operators, Phys. Rev.D 100 (2019) 025013 [arXiv:1904.04833] [INSPIRE].

  41. A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  42. C.A. Keller and A. Maloney, Poincaŕe series, 3D gravity and CFT spectroscopy, JHEP02 (2015) 080 [arXiv:1407.6008] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  43. N. Afkhami-Jeddi et al., Constraints on higher spin CFT2 , JHEP05 (2018) 092 [arXiv:1707.07717] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. J.-B. Bae, S. Lee and J. Song, Modular constraints on conformal field theories with currents, JHEP12 (2017) 045 [arXiv:1708.08815] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  45. I.B. Frenkel, J. Lepowsky and A. Meurman, A natural representation of the Fischer-Griess Monster with the modular function j as character, Proc. Natl. Acad. Sci.81 (1984) 3256.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  46. T. M. Thompson, From error-correcting codes through sphere packings to simple groups, Cambridge University Press, Cambridge U.K. (1983).

    MATH  Book  Google Scholar 

  47. H. Cohn, A conceptual breakthrough in sphere packing, Not. AMS64 (2017) 102 [arXiv:1611.01685].

    MathSciNet  MATH  Google Scholar 

  48. D. de Laat and F. Vallentin, A breakthrough in sphere packing: the search for magic functions, arXiv:1607.02111.

  49. G.F. Tóth, Packing and covering, in Handbook of discrete and computational geometry, J. Goodman, J. O’Rourke and C.D.Tóth eds., CRC Press, Boca Raton, U.S.A., (2017), chapter 2.

  50. E. Hlawka, Zur geometrie der zahlen, Math. Zeit.49 (1943) 285.

    MathSciNet  MATH  Article  Google Scholar 

  51. H.F. Blichfeldt, The minimum value of quadratic forms, and the closest packing of spheres,” Math. Ann.101 (1929) 605.

  52. G.A. Kabatiansky and V.I. Levenshtein, On bounds for packings on a sphere and in space, Probl. Pered. Inf.14 (1978) 3.

    MathSciNet  Google Scholar 

  53. H. Cohn et al., Sphere packing bounds via spherical codes, Duke Math. J.163 (2014) 1965.

    MathSciNet  MATH  Article  Google Scholar 

  54. P. Delsarte, Bounds for unrestricted codes, by linear programming, Philips Res. Rep.27 (1972) 272.

    MathSciNet  MATH  Google Scholar 

  55. D.V. Gorbachev, Extremal problem for entire functions of exponential spherical type, connected with the levenshtein bound on the sphere packing density in r n (in Russian), Izv. Tula State Univ. Ser. Math. Mech. Inf.6 (2000) 71

  56. A.M. Odlyzko and N.J. Sloane, A theta-function identity for nonlattice packings, Stud. Sci. Math. Hung15 (1980) 461.

    MathSciNet  MATH  Google Scholar 

  57. J. Qiao and S. Rychkov, Cut-touching linear functionals in the conformal bootstrap, JHEP06 (2017) 076 [arXiv:1705.01357] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  58. M. Viazovska, Sharp sphere packings, in the proceedings of the International Congress of Mathematicians, August 1–9, Rio de Janeiro, Brazil (2018).

  59. D. de Laat and F. Vallentin, A semidefinite programming hierarchy for packing problems in discrete geometry, Math. Prog.151 (2015) 529.

    MathSciNet  MATH  Article  Google Scholar 

  60. H. Cohn and A. Kumar, Optimality and uniqueness of the Leech lattice among lattices, Ann. Math.170 (2009) 1003.

    MathSciNet  MATH  Article  Google Scholar 

  61. S. Torquato and F.H. Stillinger, New conjectural lower bounds on the optimal density of sphere packings, Exp. Math.15 (2006) 307.

    MathSciNet  MATH  Article  Google Scholar 

  62. O. Lunin and S.D. Mathur, Correlation functions for M N/S(N ) orbifolds, Commun. Math. Phys.219 (2001) 399 [hep-th/0006196] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  63. T. Hartman, S. Jain and S. Kundu, Causality constraints in conformal field theory, JHEP05 (2016) 099 [arXiv:1509.00014] [INSPIRE].

    ADS  Article  Google Scholar 

  64. S. Caron-Huot, Analyticity in spin in conformal theories, JHEP09 (2017) 078 [arXiv:1703.00278] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  65. M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP12 (2012) 091 [arXiv:1209.4355] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  66. J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP01 (2017) 013 [arXiv:1509.03612] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  67. B. Mukhametzhanov and A. Zhiboedov, Modular invariance, tauberian theorems and microcanonical entropy, JHEP10 (2019) 261 [arXiv:1904.06359] [INSPIRE].

    ADS  Article  Google Scholar 

  68. C. Zong, Sphere packings, Springer, Germany (2008).

    Google Scholar 

  69. V. Levenshtein, Bounds for packings in n-dimensional Euclidean space, Sov. Math. Dokl.20 (1979) 417.

    MATH  Google Scholar 

  70. G. Parisi and F. Zamponi, Amorphous packings of hard spheres for large space dimension, J. Stat. Mech.03 (2006) P03017.

    MathSciNet  MATH  Google Scholar 

  71. G. Parisi and F. Zamponi, Mean-field theory of hard sphere glasses and jamming, Rev. Mod. Phys.82 (2010) 789.

    ADS  Article  Google Scholar 

  72. P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP11 (2018) 102 [arXiv:1805.00098] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  73. A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  74. Z. Komargodski and A. Zhiboedov, Convexity and Liberation at large spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

    ADS  Article  Google Scholar 

  75. B. Mukhametzhanov and A. Zhiboedov, Analytic euclidean bootstrap, JHEP10 (2019) 270 [arXiv:1808.03212] [INSPIRE].

    ADS  Article  Google Scholar 

  76. D. Zagier, Elliptic modular forms and their applications, in The 1-2-3 of modular forms, D. Zeiger ed., Springer, Germany (2008).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dalimil Mazáč.

Additional information

ArXiv ePrint: 1905.01319

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hartman, T., Mazáč, D. & Rastelli, L. Sphere packing and quantum gravity. J. High Energ. Phys. 2019, 48 (2019). https://doi.org/10.1007/JHEP12(2019)048

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2019)048

Keywords

  • AdS-CFT Correspondence
  • Conformal Field Theory
  • Black Holes
  • Conformal and W Symmetry