Abstract
We establish a precise relation between the modular bootstrap, used to con- strain the spectrum of 2D CFTs, and the sphere packing problem in Euclidean geometry. The modular bootstrap bound for chiral algebra U(1)c maps exactly to the Cohn-Elkies linear programming bound on the sphere packing density in d = 2c dimensions. We also show that the analytic functionals developed earlier for the correlator conformal bootstrap can be adapted to this context. For c = 4 and c = 12, these functionals exactly repro- duce the “magic functions” used recently by Viazovska [1] and Cohn et al. [2] to solve the sphere packing problem in dimensions 8 and 24. The same functionals are also applied to general 2D CFTs, with only Virasoro symmetry. In the limit of large central charge, we relate sphere packing to bounds on the black hole spectrum in 3D quantum gravity, and prove analytically that any such theory must have a nontrivial primary state of dimension \( {\Delta}_0\underset{\sim }{<}c/\mathrm{8.503.} \)
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
M.S. Viazovska, The sphere packing problem in dimension 8, Ann. Math.185 (2017) 991 [arXiv:1603.04246].
H. Cohn et al., The sphere packing problem in dimension 24, Ann. Math.185 (2017) 1017 [arXiv:1603.06518].
N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].
S. Hellerman, A universal inequality for CFT and quantum gravity, JHEP08 (2011) 130 [arXiv:0902.2790] [INSPIRE].
D. Friedan and C.A. Keller, Constraints on 2d CFT partition functions, JHEP10 (2013) 180 [arXiv:1307.6562] [INSPIRE].
S. Collier, Y.-H. Lin and X. Yin, Modular bootstrap revisited, JHEP09 (2018) 061 [arXiv:1608.06241] [INSPIRE].
N. Afkhami-Jeddi, T. Hartman and A. Tajdini, Fast conformal bootstrap and constraints on 3D gravity, JHEP05 (2019) 087 [arXiv:1903.06272] [INSPIRE].
J.H. Conway, N.J.A. Sloane and E. Bannai, Sphere-packings, lattices, and groups, Springer, Berlin Germany (1987).
T.C. Hales, A proof of the Kepler conjecture, Ann. Math.162 (2005) 1065.
T. Hales et al., A formal proof of the Kepler conjecture, in Forum of mathematics, Pi, volume 5, Cambridge University Press, Cambridge (2017).
H. Cohn and N. Elkies, New upper bounds on sphere packings I, Ann. Math.157 (2003) 689 [math/0110009
H. Cohn, New upper bounds on sphere packings II, Geom. Topol.6 (2002) 329.
D. Mazac, Analytic bounds and emergence of AdS 2physics from the conformal bootstrap, JHEP04 (2017) 146 [arXiv:1611.10060] [INSPIRE].
D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part I: 1D CFTs and 2D S-matrices, JHEP02 (2019) 162 [arXiv:1803.10233] [INSPIRE].
D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part II. Natural bases for the crossing equation, JHEP02 (2019) 163 [arXiv:1811.10646] [INSPIRE].
D. Mazáč, A crossing-symmetric OPE inversion formula, JHEP06 (2019) 082 [arXiv:1812.02254] [INSPIRE].
D. Mazáč, L. Rastelli and X. Zhou, An analytic approach to BCFT d , arXiv:1812.09314 [INSPIRE].
A. Kaviraj and M.F. Paulos, The functional bootstrap for boundary CFT, arXiv:1812.04034 [INSPIRE].
H. Cohn et al., Universal optimality of the E8 and Leech lattices and interpolation formulas, arXiv:1902.05438.
J.D. Bekenstein, Universal upper bound on the entropy-to-energy ratio for bounded systems, Phys. Rev.D 23 (1981) 287.
P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP09 (2007) 120 [arXiv:0708.4025] [INSPIRE].
Y. Sekino and L. Susskind, Fast scramblers, JHEP10 (2008) 065 [arXiv:0808.2096] [INSPIRE].
J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP08 (2016) 106 [arXiv:1503.01409] [INSPIRE].
L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys.64 (2016) 44 [arXiv:1403.5695] [INSPIRE].
G. Höhn, Selbstduale vertexoperatorsuperalgebren und das babymonster (self-dual vertex operator super algebras and the baby monster), arXiv:0706.0236.
G. Höhn, Conformal designs based on vertex operator algebras, Adv. Math.217 (2008) 2301.
E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].
R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE].
T. Hartman, C.A. Keller and B. Stoica, Universal spectrum of 2d conformal field theory in the large c limit, JHEP09 (2014) 118 [arXiv:1405.5137] [INSPIRE].
C.A. Keller and H. Ooguri, Modular constraints on Calabi-Yau compactifications, Commun. Math. Phys.324 (2013) 107 [arXiv:1209.4649] [INSPIRE].
J.D. Qualls and A.D. Shapere, Bounds on operator dimensions in 2D conformal field theories, JHEP05 (2014) 091 [arXiv:1312.0038] [INSPIRE].
J.D. Qualls, Universal bounds in even-spin CFTs, JHEP12 (2015) 001 [arXiv:1412.0383] [INSPIRE].
N. Benjamin, E. Dyer, A.L. Fitzpatrick and S. Kachru, Universal bounds on charged states in 2d CFT and 3d gravity, JHEP08 (2016) 041 [arXiv:1603.09745] [INSPIRE].
M. Ashrafi and F. Loran, Non-chiral 2d CFT with integer energy levels, JHEP09 (2016) 121 [arXiv:1607.08516] [INSPIRE].
M. Cho, S. Collier and X. Yin, Genus two modular bootstrap, JHEP04 (2019) 022 [arXiv:1705.05865] [INSPIRE].
E. Dyer, A.L. Fitzpatrick and Y. Xin, Constraints on flavored 2d CFT partition functions, JHEP02 (2018) 148 [arXiv:1709.01533] [INSPIRE].
A. Belin, A. Castro, J. Gomes and C.A. Keller, Siegel paramodular forms and sparseness in AdS 3/CFT 2 , JHEP11 (2018) 037 [arXiv:1805.09336] [INSPIRE].
T. Anous, R. Mahajan and E. Shaghoulian, Parity and the modular bootstrap, SciPost Phys.5 (2018) 022 [arXiv:1803.04938] [INSPIRE].
J.-B. Bae, S. Lee and J. Song, Modular constraints on superconformal field theories, JHEP01 (2019) 209 [arXiv:1811.00976] [INSPIRE].
Y.-H. Lin and S.-H. Shao, Anomalies and bounds on charged operators, Phys. Rev.D 100 (2019) 025013 [arXiv:1904.04833] [INSPIRE].
A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP02 (2010) 029 [arXiv:0712.0155] [INSPIRE].
C.A. Keller and A. Maloney, Poincaŕe series, 3D gravity and CFT spectroscopy, JHEP02 (2015) 080 [arXiv:1407.6008] [INSPIRE].
N. Afkhami-Jeddi et al., Constraints on higher spin CFT2 , JHEP05 (2018) 092 [arXiv:1707.07717] [INSPIRE].
J.-B. Bae, S. Lee and J. Song, Modular constraints on conformal field theories with currents, JHEP12 (2017) 045 [arXiv:1708.08815] [INSPIRE].
I.B. Frenkel, J. Lepowsky and A. Meurman, A natural representation of the Fischer-Griess Monster with the modular function j as character, Proc. Natl. Acad. Sci.81 (1984) 3256.
T. M. Thompson, From error-correcting codes through sphere packings to simple groups, Cambridge University Press, Cambridge U.K. (1983).
H. Cohn, A conceptual breakthrough in sphere packing, Not. AMS64 (2017) 102 [arXiv:1611.01685].
D. de Laat and F. Vallentin, A breakthrough in sphere packing: the search for magic functions, arXiv:1607.02111.
G.F. Tóth, Packing and covering, in Handbook of discrete and computational geometry, J. Goodman, J. O’Rourke and C.D.Tóth eds., CRC Press, Boca Raton, U.S.A., (2017), chapter 2.
E. Hlawka, Zur geometrie der zahlen, Math. Zeit.49 (1943) 285.
H.F. Blichfeldt, The minimum value of quadratic forms, and the closest packing of spheres,” Math. Ann.101 (1929) 605.
G.A. Kabatiansky and V.I. Levenshtein, On bounds for packings on a sphere and in space, Probl. Pered. Inf.14 (1978) 3.
H. Cohn et al., Sphere packing bounds via spherical codes, Duke Math. J.163 (2014) 1965.
P. Delsarte, Bounds for unrestricted codes, by linear programming, Philips Res. Rep.27 (1972) 272.
D.V. Gorbachev, Extremal problem for entire functions of exponential spherical type, connected with the levenshtein bound on the sphere packing density in r n (in Russian), Izv. Tula State Univ. Ser. Math. Mech. Inf.6 (2000) 71
A.M. Odlyzko and N.J. Sloane, A theta-function identity for nonlattice packings, Stud. Sci. Math. Hung15 (1980) 461.
J. Qiao and S. Rychkov, Cut-touching linear functionals in the conformal bootstrap, JHEP06 (2017) 076 [arXiv:1705.01357] [INSPIRE].
M. Viazovska, Sharp sphere packings, in the proceedings of the International Congress of Mathematicians, August 1–9, Rio de Janeiro, Brazil (2018).
D. de Laat and F. Vallentin, A semidefinite programming hierarchy for packing problems in discrete geometry, Math. Prog.151 (2015) 529.
H. Cohn and A. Kumar, Optimality and uniqueness of the Leech lattice among lattices, Ann. Math.170 (2009) 1003.
S. Torquato and F.H. Stillinger, New conjectural lower bounds on the optimal density of sphere packings, Exp. Math.15 (2006) 307.
O. Lunin and S.D. Mathur, Correlation functions for M N/S(N ) orbifolds, Commun. Math. Phys.219 (2001) 399 [hep-th/0006196] [INSPIRE].
T. Hartman, S. Jain and S. Kundu, Causality constraints in conformal field theory, JHEP05 (2016) 099 [arXiv:1509.00014] [INSPIRE].
S. Caron-Huot, Analyticity in spin in conformal theories, JHEP09 (2017) 078 [arXiv:1703.00278] [INSPIRE].
M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP12 (2012) 091 [arXiv:1209.4355] [INSPIRE].
J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP01 (2017) 013 [arXiv:1509.03612] [INSPIRE].
B. Mukhametzhanov and A. Zhiboedov, Modular invariance, tauberian theorems and microcanonical entropy, JHEP10 (2019) 261 [arXiv:1904.06359] [INSPIRE].
C. Zong, Sphere packings, Springer, Germany (2008).
V. Levenshtein, Bounds for packings in n-dimensional Euclidean space, Sov. Math. Dokl.20 (1979) 417.
G. Parisi and F. Zamponi, Amorphous packings of hard spheres for large space dimension, J. Stat. Mech.03 (2006) P03017.
G. Parisi and F. Zamponi, Mean-field theory of hard sphere glasses and jamming, Rev. Mod. Phys.82 (2010) 789.
P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP11 (2018) 102 [arXiv:1805.00098] [INSPIRE].
A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE].
Z. Komargodski and A. Zhiboedov, Convexity and Liberation at large spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE].
B. Mukhametzhanov and A. Zhiboedov, Analytic euclidean bootstrap, JHEP10 (2019) 270 [arXiv:1808.03212] [INSPIRE].
D. Zagier, Elliptic modular forms and their applications, in The 1-2-3 of modular forms, D. Zeiger ed., Springer, Germany (2008).
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1905.01319
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Hartman, T., Mazáč, D. & Rastelli, L. Sphere packing and quantum gravity. J. High Energ. Phys. 2019, 48 (2019). https://doi.org/10.1007/JHEP12(2019)048
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2019)048