Skip to main content
Log in

Phenomenology of light sneutrino dark matter in cMSSM/mSUGRA with inverse seesaw

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the possibility of a light Dark Matter (DM) within a constrained Minimal Supersymmetric Standard Model (cMSSM) framework augmented by a SM singlet-pair sector to account for the non-zero neutrino masses by inverse seesaw mechanism. Working within a ‘hybrid’ scenario with the MSSM sector fixed at high scale and the singlet neutrino sector at low scale, we find that, contrary to the case of the usual cMSSM where the neutralino DM cannot be very light, we can have a light sneutrino DM with mass below 100 GeV satisfying all the current experimental constraints from cosmology, collider as well as low-energy experiments. We also note that the supersymmetric inverse seesaw mechanism with sneutrino as the lightest supersymmetric partner can have enhanced same-sign dilepton final states with large coming from the gluino- and squark-pair as well as the squark-gluino associated productions and their cascade decay through charginos. We present a collider study for the same-sign dilepton + jets+ signal in this scenario and propose some distinctions with the usual cMSSM. We also comment on the implications of such a light DM scenario on the invisible decay width of an 125 GeV Higgs boson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

    Article  ADS  Google Scholar 

  2. G. Bertone, Particle dark matter, Cambridge University Press, Cambridge U.K. (2010).

    Book  MATH  Google Scholar 

  3. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  4. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

    Article  ADS  Google Scholar 

  5. K. Griest and M. Kamionkowski, Supersymmetric dark matter, Phys. Rept. 333 (2000) 167 [INSPIRE].

    Article  ADS  Google Scholar 

  6. T. Hebbeker, Can the sneutrino be the lightest supersymmetric particle?, Phys. Lett. B 470 (1999) 259 [hep-ph/9910326] [INSPIRE].

    ADS  Google Scholar 

  7. T. Falk, K.A. Olive and M. Srednicki, Heavy sneutrinos as dark matter, Phys. Lett. B 339 (1994) 248 [hep-ph/9409270] [INSPIRE].

    ADS  Google Scholar 

  8. XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, arXiv:1207.5988 [INSPIRE].

  9. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  10. D. Larson et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: power spectra and WMAP-derived parameters, Astrophys. J. Suppl. 192 (2011) 16 [arXiv:1001.4635] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J.S. Hagelin, G.L. Kane and S. Raby, Perhaps scalar neutrinos are the lightest supersymmetric partners, Nucl. Phys. B 241 (1984) 638 [INSPIRE].

    Article  ADS  Google Scholar 

  12. L.E. Ibáñez, The scalar neutrinos as the lightest supersymmetric particles and cosmology, Phys. Lett. B 137 (1984) 160 [INSPIRE].

    ADS  Google Scholar 

  13. The LEP Electroweak Working Group, http://lepewwg.web.cern.ch/LEPEWWG.

  14. DAMA collaboration, R. Bernabei et al., First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C 56 (2008) 333 [arXiv:0804.2741] [INSPIRE].

    Article  ADS  Google Scholar 

  15. DAMA, LIBRA collaboration, R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].

    Article  ADS  Google Scholar 

  16. CoGeNT collaboration, C. Aalseth et al., Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett. 106 (2011) 131301 [arXiv:1002.4703] [INSPIRE].

    Article  ADS  Google Scholar 

  17. C. Aalseth et al., Search for an annual modulation in a p-type point contact germanium dark matter detector, Phys. Rev. Lett. 107 (2011) 141301 [arXiv:1106.0650] [INSPIRE].

    Article  ADS  Google Scholar 

  18. G. Angloher et al., Results from 730 kg days of the CRESST-II dark matter search, Eur. Phys. J. C 72 (2012) 1971 [arXiv:1109.0702] [INSPIRE].

    Article  ADS  Google Scholar 

  19. XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].

    Article  ADS  Google Scholar 

  20. XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [arXiv:1104.3088] [INSPIRE].

    Article  ADS  Google Scholar 

  21. CDMS-II collaboration, Z. Ahmed et al., Dark matter search results from the CDMS II experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [INSPIRE].

    Article  ADS  Google Scholar 

  22. CDMS-II collaboration, Z. Ahmed et al., Results from a low-energy analysis of the CDMS II germanium data, Phys. Rev. Lett. 106 (2011) 131302 [arXiv:1011.2482] [INSPIRE].

    Article  ADS  Google Scholar 

  23. CDMS collaboration, Z. Ahmed et al., Search for annual modulation in low-energy CDMS-II data, arXiv:1203.1309 [INSPIRE].

  24. CDMS, EDELWEISS collaboration, Z. Ahmed et al., Combined limits on WIMPs from the CDMS and EDELWEISS experiments, Phys. Rev. D 84 (2011) 011102 [arXiv:1105.3377] [INSPIRE].

    ADS  Google Scholar 

  25. EDELWEISS collaboration, E. Armengaud et al., A search for low-mass WIMPs with EDELWEISS-II heat-and-ionization detectors, arXiv:1207.1815 [INSPIRE].

  26. V. Lebedenko et al., Result from the first science run of the ZEPLIN-III dark matter search experiment, Phys. Rev. D 80 (2009) 052010 [arXiv:0812.1150] [INSPIRE].

    ADS  Google Scholar 

  27. D.Y. Akimov et al., WIMP-nucleon cross-section results from the second science run of ZEPLIN-III, Phys. Lett. B 709 (2012) 14 [arXiv:1110.4769] [INSPIRE].

    ADS  Google Scholar 

  28. M. Felizardo et al., Final analysis and results of the phase II SIMPLE dark matter search, Phys. Rev. Lett. 108 (2012) 201302 [arXiv:1106.3014] [INSPIRE].

    Article  ADS  Google Scholar 

  29. P.J. Fox, J. Liu and N. Weiner, Integrating out astrophysical uncertainties, Phys. Rev. D 83 (2011) 103514 [arXiv:1011.1915] [INSPIRE].

    ADS  Google Scholar 

  30. J. Kopp, T. Schwetz and J. Zupan, Light dark matter in the light of CRESST-II, JCAP 03 (2012) 001 [arXiv:1110.2721] [INSPIRE].

    Article  ADS  Google Scholar 

  31. C. Kelso, D. Hooper and M.R. Buckley, Toward a consistent picture For CRESST, CoGeNT and DAMA, Phys. Rev. D 85 (2012) 043515 [arXiv:1110.5338] [INSPIRE].

    ADS  Google Scholar 

  32. M.T. Frandsen, F. Kahlhoefer, C. McCabe, S. Sarkar and K. Schmidt-Hoberg, Resolving astrophysical uncertainties in dark matter direct detection, JCAP 01 (2012) 024 [arXiv:1111.0292] [INSPIRE].

    Article  ADS  Google Scholar 

  33. P. Gondolo and G.B. Gelmini, Halo independent comparison of direct dark matter detection data, arXiv:1202.6359 [INSPIRE].

  34. R. Foot, Mirror dark matter interpretations of the DAMA, CoGeNT and CRESST-II data, Phys. Rev. D 86 (2012) 023524 [arXiv:1203.2387] [INSPIRE].

    ADS  Google Scholar 

  35. Particle Data Group, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  36. O. Buchmueller et al., Higgs and supersymmetry, Eur. Phys. J. C 72 (2012) 2020 [arXiv:1112.3564] [INSPIRE].

    ADS  Google Scholar 

  37. C. Strege et al., Updated global fits of the CMSSM including the latest LHC SUSY and Higgs searches and XENON100 data, JCAP 03 (2012) 030 [arXiv:1112.4192] [INSPIRE].

    Article  ADS  Google Scholar 

  38. L. Roszkowski, E.M. Sessolo and Y.-L.S. Tsai, Bayesian implications of current LHC supersymmetry and dark matter detection searches for the constrained MSSM, arXiv:1202.1503 [INSPIRE].

  39. J. Ellis, K.A. Olive and K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM, Eur. Phys. J. C 72 (2012) 2005 [arXiv:1202.3262] [INSPIRE].

    ADS  Google Scholar 

  40. A. Fowlie et al., The CMSSM favoring new territories: the impact of new LHC limits and a 125 GeV Higgs, arXiv:1206.0264 [INSPIRE].

  41. S. Akula, P. Nath and G. Peim, Implications of the Higgs boson discovery for mSUGRA, arXiv:1207.1839 [INSPIRE].

  42. C. Beskidt, W. de Boer, D. Kazakov and F. Ratnikov, Constraints on Supersymmetry from LHC data on SUSY searches and Higgs bosons combined with cosmology and direct dark matter searches, arXiv:1207.3185 [INSPIRE].

  43. D. Hooper and T. Plehn, Supersymmetric dark matter: how light can the LSP be?, Phys. Lett. B 562 (2003) 18 [hep-ph/0212226] [INSPIRE].

    ADS  Google Scholar 

  44. H.K. Dreiner et al., Mass bounds on a very light neutralino, Eur. Phys. J. C 62 (2009) 547 [arXiv:0901.3485] [INSPIRE].

    Article  ADS  Google Scholar 

  45. E. Kuflik, A. Pierce and K.M. Zurek, Light neutralinos with large scattering cross sections in the minimal supersymmetric standard model, Phys. Rev. D 81 (2010) 111701 [arXiv:1003.0682] [INSPIRE].

    ADS  Google Scholar 

  46. N. Fornengo, S. Scopel and A. Bottino, Discussing direct search of dark matter particles in the Minimal Supersymmetric extension of the Standard Model with light neutralinos, Phys. Rev. D 83 (2011) 015001 [arXiv:1011.4743] [INSPIRE].

    ADS  Google Scholar 

  47. L. Calibbi, T. Ota and Y. Takanishi, Light neutralino in the MSSM: a playground for dark matter, flavor physics and collider experiments, JHEP 07 (2011) 013 [arXiv:1104.1134] [INSPIRE].

    Article  ADS  Google Scholar 

  48. P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    ADS  Google Scholar 

  49. T. Yanagida, Horizontal symmetry and masses of neutrinos, in the proceedings of the Workshop on unified theory and baryon number in the universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba, Japan (1979).

  50. S.L. Glashow, The future of elementary particle physics, in Quarks and leptons, Cargèse lectures, M. Lévy et al. eds., Plenum Press, New York, U.S.A. (1980).

  51. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  52. A. Mazumdar, The origin of dark matter, matter-anti-matter asymmetry and inflation, arXiv:1106.5408 [INSPIRE].

  53. R.N. Mohapatra, Mechanism for understanding small neutrino mass in superstring theories, Phys. Rev. Lett. 56 (1986) 561 [INSPIRE].

    Article  ADS  Google Scholar 

  54. R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].

    ADS  Google Scholar 

  55. C. Arina, F. Bazzocchi, N. Fornengo, J. Romao and J. Valle, Minimal supergravity sneutrino dark matter and inverse seesaw neutrino masses, Phys. Rev. Lett. 101 (2008) 161802 [arXiv:0806.3225] [INSPIRE].

    Article  ADS  Google Scholar 

  56. Z. Kang, J. Li, T. Li, T. Liu and J. Yang, Asymmetric sneutrino dark matter in the nmssm with minimal inverse seesaw, arXiv:1102.5644 [INSPIRE].

  57. S. Khalil, H. Okada and T. Toma, Right-handed sneutrino dark matter in supersymmetric B-L model, JHEP 07 (2011) 026 [arXiv:1102.4249] [INSPIRE].

    Article  ADS  Google Scholar 

  58. S. Khalil, TeV-scale gauged B-L symmetry with inverse seesaw mechanism, Phys. Rev. D 82 (2010) 077702 [arXiv:1004.0013] [INSPIRE].

    ADS  Google Scholar 

  59. F.-X. Josse-Michaux and E. Molinaro, A common framework for dark matter, leptogenesis and neutrino masses, Phys. Rev. D 84 (2011) 125021 [arXiv:1108.0482] [INSPIRE].

    ADS  Google Scholar 

  60. L. Basso, O. Fischer and J. van der Bij, A natural Z model with inverse seesaw and leptonic dark matter, arXiv:1207.3250 [INSPIRE].

  61. H. An, P.B. Dev, Y. Cai and R. Mohapatra, Sneutrino dark matter in gauged inverse seesaw models for neutrinos, Phys. Rev. Lett. 108 (2012) 081806 [arXiv:1110.1366] [INSPIRE].

    Article  ADS  Google Scholar 

  62. P.B. Dev and R. Mohapatra, TeV scale inverse seesaw in SO(10) and leptonic non-unitarity effects, Phys. Rev. D 81 (2010) 013001 [arXiv:0910.3924] [INSPIRE].

    ADS  Google Scholar 

  63. P. Bhupal Dev and R. Mohapatra, Electroweak symmetry breaking and proton decay in SO(10) SUSY-GUT with TeV W (R), Phys. Rev. D 82 (2010) 035014 [arXiv:1003.6102] [INSPIRE].

    ADS  Google Scholar 

  64. CMS collaboration, Observation of a new boson with a mass near 125 GeV, PAS-HIG-12-020 (2012).

  65. ATLAS collaboration, Observation of an excess of events in the search for the standard model Higgs boson with the ATLAS detector at the LHC, ATLAS-CONF-2012-093 (2012).

  66. H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].

    ADS  Google Scholar 

  67. H. Baer, V. Barger and A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar, JHEP 05 (2012) 091 [arXiv:1202.4038] [INSPIRE].

    Article  ADS  Google Scholar 

  68. J.L. Feng, K.T. Matchev and D. Sanford, Focus point supersymmetry redux, Phys. Rev. D 85 (2012) 075007 [arXiv:1112.3021] [INSPIRE].

    ADS  Google Scholar 

  69. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    ADS  Google Scholar 

  70. S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs boson mass predictions in SUGRA unification, recent LHC-7 results and dark matter, Phys. Rev. D 85 (2012) 075001 [arXiv:1112.3645] [INSPIRE].

    ADS  Google Scholar 

  71. L. Aparicio, D. Cerdeno and L. Ibáñez, A 119-125 GeV Higgs from a string derived slice of the CMSSM, JHEP 04 (2012) 126 [arXiv:1202.0822] [INSPIRE].

    Article  ADS  Google Scholar 

  72. M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].

    Article  ADS  Google Scholar 

  73. J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].

    ADS  Google Scholar 

  74. N. Karagiannakis, G. Lazarides and C. Pallis, Dark matter and Higgs mass in the CMSSM with Yukawa quasi-unification, arXiv:1201.2111 [INSPIRE].

  75. J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, arXiv:1207.3698 [INSPIRE].

  76. M. Hirsch, T. Kernreiter, J.C. Romao and A. Villanova del Moral, Minimal supersymmetric inverse seesaw: neutrino masses, lepton flavour violation and LHC phenomenology, JHEP 01 (2010) 103 [arXiv:0910.2435] [INSPIRE].

    Article  ADS  Google Scholar 

  77. E. Ma, Radiative inverse seesaw mechanism for nonzero neutrino mass, Phys. Rev. D 80 (2009) 013013 [arXiv:0904.4450] [INSPIRE].

    ADS  Google Scholar 

  78. F. Bazzocchi, D.G. Cerdeno, C. Muñoz and J.W.F. Valle, Calculable inverse-seesaw neutrino masses in supersymmetry, Phys. Rev. D 81 (2010) 051701 [arXiv:0907.1262] [INSPIRE].

    ADS  Google Scholar 

  79. S.C. Park, K. Wang and T.T. Yanagida, Neutrino mass from a hidden world and its phenomenological implications, Phys. Lett. B 685 (2010) 309 [arXiv:0909.2937] [INSPIRE].

    ADS  Google Scholar 

  80. C.S. Fong, R.N. Mohapatra and I. Sung, Majorana neutrinos from inverse seesaw in warped extra dimension, Phys. Lett. B 704 (2011) 171 [arXiv:1107.4086] [INSPIRE].

    ADS  Google Scholar 

  81. S. Bethke, The 2009 world average of αs, Eur. Phys. J. C 64 (2009) 689 [arXiv:0908.1135] [INSPIRE].

    Article  ADS  Google Scholar 

  82. Tevatron Electroweak Working Group, CDF, D0 collaboration, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb −1 of data, arXiv:1107.5255 [INSPIRE].

  83. A. Geringer-Sameth and S.M. Koushiappas, Exclusion of canonical WIMPs by the joint analysis of Milky Way dwarfs with Fermi, Phys. Rev. Lett. 107 (2011) 241303 [arXiv:1108.2914] [INSPIRE].

    Article  ADS  Google Scholar 

  84. Fermi-LAT collaboration, M. Ackermann et al., Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope, Phys. Rev. Lett. 107 (2011) 241302 [arXiv:1108.3546] [INSPIRE].

    Article  ADS  Google Scholar 

  85. G. Venanzoni, Latest on g − 2 from experiment, J. Phys. Conf. Ser. 349 (2012) 012008 [arXiv:1203.1501] [INSPIRE].

    Article  ADS  Google Scholar 

  86. T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Tenth-order QED contribution to the electron g − 2 and an improved value of the fine structure constant, arXiv:1205.5368 [INSPIRE].

  87. BaBar collaboration, J. Lees et al., Precision measurement of the B → Xsγ photon energy spectrum, branching fraction and direct CP asymmetry ACP (B → Xs+dγ), arXiv:1207.2690 [INSPIRE].

  88. LHCb collaboration, R. Aaij et al., Strong constraints on the rare decays Bs → μ+μ and B0 → μ+μ, Phys. Rev. Lett. 108 (2012) 231801 [arXiv:1203.4493] [INSPIRE].

    Article  ADS  Google Scholar 

  89. A. Abada, C. Biggio, F. Bonnet, M. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [INSPIRE].

    Article  ADS  Google Scholar 

  90. S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-standard neutrino interactions with matter from physics beyond the standard model, Nucl. Phys. B 810 (2009) 369 [arXiv:0807.1003] [INSPIRE].

    Article  ADS  Google Scholar 

  91. N. Sato et al., Mass limits for dark matter particles derived from high-energy neutrinos from the sun, Phys. Rev. D 44 (1991) 2220 [INSPIRE].

    ADS  Google Scholar 

  92. CMS supersymmetry physics results, https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsSUS.

  93. ATLAS experimentPublic results, https://twiki.cern.ch/twiki/bin/view/AtlasPublic /SupersymmetryPublicResults.

  94. CMS collaboration, S. Chatrchyan et al., Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt {s} = 7\;TeV \), arXiv:1207.1898 [INSPIRE].

  95. U. Chattopadhyay and P. Nath, Upper limits on sparticle masses from g − 2 and the possibility for discovery of SUSY at colliders and in dark matter searches, Phys. Rev. Lett. 86 (2001) 5854 [hep-ph/0102157] [INSPIRE].

    Article  ADS  Google Scholar 

  96. U. Chattopadhyay and P. Nath, Interpreting the new Brookhaven muon (g − 2) result, Phys. Rev. D 66 (2002) 093001 [hep-ph/0208012] [INSPIRE].

    ADS  Google Scholar 

  97. W. de Boer, M. Huber, C. Sander and D. Kazakov, A global fit to the anomalous magnetic moment, b → Xsγ and Higgs limits in the constrained MSSM, Phys. Lett. B 515 (2001) 283 [INSPIRE].

    ADS  Google Scholar 

  98. S.P. Martin, A supersymmetry primer, in Perspectives on supersymmetry II, G.L. Kane ed., World Scientific, Singapore (2010), hep-ph/9709356 [INSPIRE].

  99. D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, arXiv:1205.4018 [INSPIRE].

  100. F. Staub, Sarah, arXiv:0806.0538 [INSPIRE].

  101. F. Staub, From superpotential to model files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  102. F. Staub, Automatic calculation of supersymmetric renormalization group equations and self energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  103. W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].

    Article  ADS  Google Scholar 

  104. W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].

    Article  ADS  Google Scholar 

  105. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  106. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  107. L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].

    Article  ADS  Google Scholar 

  108. H. Baer, V. Barger, P. Huang, A. Mustafayev and X. Tata, Radiative natural SUSY with a 125 GeV Higgs boson, arXiv:1207.3343 [INSPIRE].

  109. S. Heinemeyer, D. Stöckinger and G. Weiglein, Two loop SUSY corrections to the anomalous magnetic moment of the muon, Nucl. Phys. B 690 (2004) 62 [hep-ph/0312264] [INSPIRE].

    Article  ADS  Google Scholar 

  110. M. Misiak et al., Estimate of B( B → Xsγ) at O(αs), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].

    Article  ADS  Google Scholar 

  111. S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Effects of supergravity induced electroweak breaking on rare B decays and mixings, Nucl. Phys. B 353 (1991) 591 [INSPIRE].

    Article  ADS  Google Scholar 

  112. P. Nath and R.L. Arnowitt, b → sγ decay in supergravity grand unification and dark matter, Phys. Lett. B 336 (1994) 395 [hep-ph/9406389] [INSPIRE].

    ADS  Google Scholar 

  113. F. Borzumati, M. Drees and M.M. Nojiri, Implications for supersymmetric dark matter detection from radiative b decays, Phys. Rev. D 51 (1995) 341 [hep-ph/9406390] [INSPIRE].

    ADS  Google Scholar 

  114. H. Baer, M. Brhlik, D. Castano and X. Tata, b → sγ constraints on the minimal supergravity model with large tan β, Phys. Rev. D 58 (1998) 015007 [hep-ph/9712305] [INSPIRE].

    ADS  Google Scholar 

  115. A.J. Buras, Minimal flavour violation and beyond: towards a flavour code for short distance dynamics, Acta Phys. Polon. B 41 (2010) 2487 [arXiv:1012.1447] [INSPIRE].

    Google Scholar 

  116. S.R. Choudhury and N. Gaur, Dileptonic decay of B(s) meson in SUSY models with large tan β, Phys. Lett. B 451 (1999) 86 [hep-ph/9810307] [INSPIRE].

    ADS  Google Scholar 

  117. K. Babu and C.F. Kolda, Higgs mediated B0 → μ+μ in minimal supersymmetry, Phys. Rev. Lett. 84 (2000) 228 [hep-ph/9909476] [INSPIRE].

    Article  ADS  Google Scholar 

  118. J.K. Mizukoshi, X. Tata and Y. Wang, Higgs mediated leptonic decays of Bs and Bd mesons as probes of supersymmetry, Phys. Rev. D 66 (2002) 115003 [hep-ph/0208078] [INSPIRE].

    ADS  Google Scholar 

  119. F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].

    Article  ADS  Google Scholar 

  120. A. Ilakovac and A. Pilaftsis, Flavor violating charged lepton decays in seesaw-type models, Nucl. Phys. B 437 (1995) 491 [hep-ph/9403398] [INSPIRE].

    Article  ADS  Google Scholar 

  121. F. Deppisch and J. Valle, Enhanced lepton flavor violation in the supersymmetric inverse seesaw model, Phys. Rev. D 72 (2005) 036001 [hep-ph/0406040] [INSPIRE].

    ADS  Google Scholar 

  122. F. Deppisch, T. Kosmas and J. Valle, Enhanced μ -e conversion in nuclei in the inverse seesaw model, Nucl. Phys. B 752 (2006) 80 [hep-ph/0512360] [INSPIRE].

    Article  ADS  Google Scholar 

  123. A. Ibarra, E. Molinaro and S. Petcov, Low energy signatures of the TeV scale see-saw mechanism, Phys. Rev. D 84 (2011) 013005 [arXiv:1103.6217] [INSPIRE].

    ADS  Google Scholar 

  124. W. Abdallah, A. Awad, S. Khalil and H. Okada, Muon anomalous magnetic moment and μ → eγ in B-L model with inverse seesaw,arXiv:1105.1047 [INSPIRE].

  125. A. Abada, D. Das and C. Weiland, Enhanced Higgs mediated lepton flavour violating processes in the supersymmetric inverse seesaw model, JHEP 03 (2012) 100 [arXiv:1111.5836] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  126. A. Abada, D. Das, A. Vicente and C. Weiland, Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution, JHEP 09 (2012) 015 [arXiv:1206.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  127. M. Malinsky, T. Ohlsson and H. Zhang, Non-unitarity effects in a realistic low-scale seesaw model, Phys. Rev. D 79 (2009) 073009 [arXiv:0903.1961] [INSPIRE].

    ADS  Google Scholar 

  128. M. Malinsky, T. Ohlsson, Z.-z. Xing and H. Zhang, Non-unitary neutrino mixing and CP-violation in the minimal inverse seesaw model, Phys. Lett. B 679 (2009) 242 [arXiv:0905.2889] [INSPIRE].

    ADS  Google Scholar 

  129. R. Lal Awasthi and M.K. Parida, Inverse seesaw in nonsupersymmetric SO(10), proton lifetime, nonunitarity effects and a low-mass Z boson, arXiv:1112.1826 [INSPIRE].

  130. K. Ghosh, B. Mukhopadhyaya and U. Sarkar, Signals of an invisibly decaying Higgs in a scalar dark matter scenario: a study for the Large Hadron Collider, Phys. Rev. D 84 (2011) 015017 [arXiv:1105.5837] [INSPIRE].

    ADS  Google Scholar 

  131. Y. Bai, P. Draper and J. Shelton, Measuring the invisible Higgs width at the 7 and 8 TeV LHC, JHEP 07 (2012) 192 [arXiv:1112.4496] [INSPIRE].

    Article  ADS  Google Scholar 

  132. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].

    Article  ADS  Google Scholar 

  133. J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for invisible Higgs decays with global fits, arXiv:1205.6790 [INSPIRE].

  134. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, arXiv:1207.1717 [INSPIRE].

  135. S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, New Higgs interactions and recent data from the LHC and the Tevatron, arXiv:1207.3588 [INSPIRE].

  136. Y. Mambrini, Higgs searches and singlet scalar dark matter: combined constraints from XENON 100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].

    ADS  Google Scholar 

  137. Y. Mambrini, Invisible Higgs and scalar dark matter, arXiv:1112.0011 [INSPIRE].

  138. P.B. Dev, R. Franceschini and R. Mohapatra, Bounds on TeV seesaw models from LHC Higgs data, arXiv:1207.2756 [INSPIRE].

  139. H. Baer and X. Tata, Dark matter and the LHC, arXiv:0805.1905 [INSPIRE].

  140. G. Bélanger, S. Kraml and A. Lessa, Light sneutrino dark matter at the LHC, JHEP 07 (2011) 083 [arXiv:1105.4878] [INSPIRE].

    Article  Google Scholar 

  141. F. del Aguila and J. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].

    Article  ADS  Google Scholar 

  142. F. del Aguila, J. Aguilar-Saavedra and J. de Blas, Trilepton signals: the golden channel for seesaw searches at LHC, Acta Phys. Polon. B 40 (2009) 2901 [arXiv:0910.2720] [INSPIRE].

    ADS  Google Scholar 

  143. C.-Y. Chen and P.B. Dev, Multi-lepton collider signatures of heavy Dirac and Majorana neutrinos, Phys. Rev. D 85 (2012) 093018 [arXiv:1112.6419] [INSPIRE].

    ADS  Google Scholar 

  144. A. Das and N. Okada, Inverse seesaw neutrino signatures at LHC and ILC, arXiv:1207.3734 [INSPIRE].

  145. S. Mondal, S. Biswas, P. Ghosh and S. Roy, Exploring novel correlations in trilepton channels at the LHC for the minimal supersymmetric inverse seesaw model, JHEP 05 (2012) 134 [arXiv:1201.1556] [INSPIRE].

    Article  ADS  Google Scholar 

  146. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  147. CTEQ collaboration, H. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [INSPIRE].

    Article  ADS  Google Scholar 

  148. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  149. A.J. Barr and C. Gwenlan, The race for supersymmetry: using mT 2 for discovery, Phys. Rev. D 80 (2009) 074007 [arXiv:0907.2713] [INSPIRE].

    ADS  Google Scholar 

  150. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Bhupal Dev.

Additional information

ArXiv ePrint: 1207.6542

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dev, P.S.B., Mondal, S., Mukhopadhyaya, B. et al. Phenomenology of light sneutrino dark matter in cMSSM/mSUGRA with inverse seesaw. J. High Energ. Phys. 2012, 110 (2012). https://doi.org/10.1007/JHEP09(2012)110

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)110

Keywords

Navigation