Skip to main content
Log in

Non-abelian self-dual string solutions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the equations of motion of the non-abelian 5-branes theory recently constructed in [1] and find exact string solutions both for uncompactified and compactified spacetime. Although one does not have the full supersymmetric construction of the non-abelian (2,0) theory, by combining knowledge of conformal symmetry and R- symmetry one can argue for the form of the 1/2 BPS equations in the case when only one scalar field is turned on. We solve this system and show that our string solutions could be lifted to become solutions of the non-abelian (2,0) theory with self-dual electric and magnetic charges, with the scalar field describing a M2-brane spike emerging out of the multiple M5-branes worldvolume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.-S. Chu and S.-L. Ko, Non-abelian action for multiple five-branes with self-dual tensors, JHEP 05 (2012) 028 [arXiv:1203.4224] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. G. Gibbons and P. Townsend, Vacuum interpolation in supergravity via super p-branes, Phys. Rev. Lett. 71 (1993) 3754 [hep-th/9307049] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. D.M. Kaplan and J. Michelson, Zero modes for the D = 11 membrane and five-brane, Phys. Rev. D 53 (1996) 3474 [hep-th/9510053] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. E. Witten, Five-brane effective action in M-theory, J. Geom. Phys. 22 (1997) 103 [hep-th/9610234] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. P.S. Howe and E. Sezgin, D = 11, p = 5, Phys. Lett. B 394 (1997) 62 [hep-th/9611008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. P.S. Howe, E. Sezgin and P.C. West, Covariant field equations of the M-theory five-brane, Phys. Lett. B 399 (1997) 49 [hep-th/9702008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Perry and J.H. Schwarz, Interacting chiral gauge fields in six-dimensions and Born-Infeld theory, Nucl. Phys. B 489 (1997) 47 [hep-th/9611065] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Aganagic, J. Park, C. Popescu and J.H. Schwarz, World volume action of the M-theory five-brane, Nucl. Phys. B 496 (1997) 191 [hep-th/9701166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. P. Pasti, D.P. Sorokin and M. Tonin, On Lorentz invariant actions for chiral p-forms, Phys. Rev. D 55 (1997) 6292 [hep-th/9611100] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. P. Pasti, D.P. Sorokin and M. Tonin, Covariant action for a D = 11 five-brane with the chiral field, Phys. Lett. B 398 (1997) 41 [hep-th/9701037] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. I.A. Bandos et al., Covariant action for the superfive-brane of M-theory, Phys. Rev. Lett. 78 (1997) 4332 [hep-th/9701149] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. I.A. Bandos et al., On the equivalence of different formulations of the M-theory five-brane, Phys. Lett. B 408 (1997) 135 [hep-th/9703127] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Cederwall, B.E. Nilsson and P. Sundell, An action for the superfive-brane in D = 11 supergravity, JHEP 04 (1998) 007 [hep-th/9712059] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. P.S. Howe, N. Lambert and P.C. West, The selfdual string soliton, Nucl. Phys. B 515 (1998) 203 [hep-th/9709014] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. C.-S. Chu and D.J. Smith, Multiple self-dual strings on M5-branes, JHEP 01 (2010) 001 [arXiv:0909.2333] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. C.-S. Chu, A theory of non-abelian tensor gauge field with non-abelian gauge symmetry G × G, arXiv:1108.5131[INSPIRE].

  18. N. Lambert and C. Papageorgakis, Non-abelian (2, 0) tensor multiplets and 3-algebras, JHEP 08 (2010) 083 [arXiv:1007.2982] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].

    ADS  Google Scholar 

  20. N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-branes, D4-branes and quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. P.-M. Ho, K.-W. Huang and Y. Matsuo, A non-abelian self-dual gauge theory in 5 + 1 dimensions, JHEP 07 (2011) 021 [arXiv:1104.4040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. C.-S. Chu and G.S. Sehmbi, D1-strings in large RR3-form flux, quantum Nambu geometry and M5-branes in C-field, J. Phys. A 45 (2012) 055401 [arXiv:1110.2687] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. B. Czech, Y.-T. Huang and M. Rozali, Amplitudes for multiple M5-branes, arXiv:1110.2791 [INSPIRE].

  24. S. Bolognesi and K. Lee, 1/4 BPS string junctions and N 3 problem in 6-dim (2, 0) superconformal theories, Phys. Rev. D 84 (2011) 126018 [arXiv:1105.5073] [INSPIRE].

    ADS  Google Scholar 

  25. H.-C. Kim, S. Kim, E. Koh, K. Lee and S. Lee, On instantons as Kaluza-Klein modes of M5-branes, JHEP 12 (2011) 031 [arXiv:1110.2175] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. T. Maxfield and S. Sethi, The conformal anomaly of M5-branes, JHEP 06 (2012) 075 [arXiv:1204.2002] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. H. Samtleben, E. Sezgin and R. Wimmer, (1, 0) superconformal models in six dimensions, JHEP 12 (2011) 062 [arXiv:1108.4060] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. H. Samtleben, E. Sezgin, R. Wimmer and L. Wulff, New superconformal models in six dimensions: gauge group and representation structure, arXiv:1204.0542 [INSPIRE].

  29. M. Akyol and G. Papadopoulos, (1, 0) superconformal theories in six dimensions and Killing spinor equations, JHEP 07 (2012) 070 [arXiv:1204.2167] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. H. Nishino and S. Rajpoot, N = 1 non-abelian tensor multiplet in four dimensions, Phys. Rev. D 85 (2012) 105017 [arXiv:1204.1379] [INSPIRE].

    ADS  Google Scholar 

  31. S. Deser, A. Gomberoff, M. Henneaux and C. Teitelboim, Duality, selfduality, sources and charge quantization in abelian N -form theories, Phys. Lett. B 400 (1997) 80 [hep-th/9702184] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Deser, A. Gomberoff, M. Henneaux and C. Teitelboim, P -brane dyons and electric magnetic duality, Nucl. Phys. B 520 (1998) 179 [hep-th/9712189] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. P.A.M. Dirac, Quantized singularities in the electromagnetic field, Proc. Roy. Soc. Lond. A 133 (1931) 60 [INSPIRE].

    Article  ADS  Google Scholar 

  34. C. Teitelboim, Gauge invariance for extended objects, Phys. Lett. B 167 (1986) 63 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. R.I. Nepomechie, Magnetic monopoles from antisymmetric tensor gauge fields, Phys. Rev. D 31 (1985) 1921 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. Y.M. Shnir, Magnetic monopoles, Springer, Berlin Germany (2005) [INSPIRE].

    Book  MATH  Google Scholar 

  37. G. ’t Hooft, Magnetic monopoles in unified gauge theories, Nucl. Phys. B 79 (1974) 276 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. A.M. Polyakov, Particle spectrum in the Quantum Field Theory, JETP Lett. 20 (1974) 194 [Pisma Zh. Eksp. Teor. Fiz. 20 (1974) 430] [INSPIRE].

    ADS  Google Scholar 

  39. B. Chen, H. Itoyama and H. Kihara, Non-abelian Berry phase, Yang-Mills instanton and USp(2 k) matrix model, Mod. Phys. Lett. A 14 (1999) 869 [hep-th/9810237] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. B. Chen, H. Itoyama and H. Kihara, Non-abelian monopoles from matrices: seeds of the space-time structure, Nucl. Phys. B 577 (2000) 23 [hep-th/9909075] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. C. Pedder, J. Sonner and D. Tong, The geometric phase and gravitational precession of D-branes, Phys. Rev. D 76 (2007) 126014 [arXiv:0709.2136] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. V.L. Campos, G. Ferretti and P. Salomonson, The non-abelian self dual string on the light cone, JHEP 12 (2000) 011 [hep-th/0011271] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. M.F. Atiyah and N.J. Hitchin, The geometry and dynamics of magnetic monopoles. M.B. Porter lectures, Princeton University Press, Princeton U.S.A. (1988) [INSPIRE].

    Google Scholar 

  44. N.S. Manton and P. Sutcliffe, Topological solitons, Cambridge University Press, Cambridge U.K. (2004) [INSPIRE].

    Book  MATH  Google Scholar 

  45. C. Sämann, Constructing self-dual strings, Commun. Math. Phys. 305 (2011) 513 [arXiv:1007.3301] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. S. Palmer and C. Sämann, Constructing generalized self-dual strings, JHEP 10 (2011) 008 [arXiv:1105.3904] [INSPIRE].

    Article  ADS  Google Scholar 

  47. C. Sämann and M. Wolf, Non-abelian tensor multiplet equations from twistor space, arXiv:1205.3108 [INSPIRE].

  48. I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475 (1996)164 [hep-th/9604089] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Lan Ko.

Additional information

ArXiv ePrint: 1207.1095

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, CS., Ko, SL. & Vanichchapongjaroen, P. Non-abelian self-dual string solutions. J. High Energ. Phys. 2012, 18 (2012). https://doi.org/10.1007/JHEP09(2012)018

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)018

Keywords

Navigation