Skip to main content
Log in

Orthosymplectic superinstanton counting and brane dynamics

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We extend the study of superinstantons presented in (Kimura and Pestun in superinstanton counting and localization, 2019) to include orthosymplectic supergroup gauge theories, \(B_{n_0|n_1}\), \(C_n\), and \(D_{n_0|n_1}\). We utilize equivariant localization to obtain the LMNS contour integral formula for the instanton partition function, and we investigate the Seiberg–Witten geometries associated with these theories. We also explore the brane configurations involving positive and negative branes together with O-planes that realize the orthosymplectic supergroup theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The work has no associated data.

Notes

  1. We thank the anonymous referee for pointing this out.

  2. This dose not imply the equivalence of these two kinds of theories!

  3. For a brief review on O4-planes, see Appendix 1.

References

  1. DeWitt, B.S.: Supermanifolds, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, vol. 5 (2012)

  2. Efetov, K.: Supersymmetry in Disorder and Chaos. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  3. Wegner, F.: Supermathematics and its Applications in Statistical Physics: Grassmann Variables and the Method of Supersymmetry. Springer, Berlin (2016)

    Google Scholar 

  4. Parisi, G., Sourlas, N.: Random magnetic fields, supersymmetry and negative dimensions. Phys. Rev. Lett. 43, 744 (1979)

    ADS  Google Scholar 

  5. Quella, T., Schomerus, V.: Superspace conformal field theory. J. Phys. A 46, 494010 (2013)

    MathSciNet  Google Scholar 

  6. Alvarez-Gaume, L., Manes, J.L.: Supermatrix models. Mod. Phys. Lett. A 6, 2039–2050 (1991)

    ADS  MathSciNet  Google Scholar 

  7. Yost, S.A.: Supermatrix models. Int. J. Mod. Phys. A 7, 6105–6120 (1992)

    ADS  MathSciNet  Google Scholar 

  8. Berkovits, N., Vafa, C., Witten, E.: Conformal field theory of AdS background with Ramond-Ramond flux. JHEP 03, 018 (1999)

    ADS  MathSciNet  Google Scholar 

  9. Cumrun V.: Brane/anti-brane systems and \(U(N|M)\) supergroup

  10. Dijkgraaf, R., Heidenreich, B., Jefferson, P., Vafa, C.: Negative branes supergroups and the signature of spacetime. JHEP 02, 050 (2018)

    ADS  MathSciNet  Google Scholar 

  11. Okuda, T., Takayanagi, T.: D-branes Ghost. JHEP 03, 062 (2006)

    ADS  Google Scholar 

  12. Nekrasov, N.: Magnificent four. Adv. Theor. Math. Phys. 24(5), 1171–1202 (2020)

    MathSciNet  Google Scholar 

  13. Nekrasov, N., Piazzalunga, N.: Magnificent four with colors. Commun. Math. Phys. 372(2), 573–597 (2019)

    ADS  MathSciNet  Google Scholar 

  14. Cumrun V.: Non-unitary holography

  15. Mikhaylov, V., Witten, E.: Branes and supergroups. Commun. Math. Phys. 340(2), 699–832 (2015)

    ADS  MathSciNet  Google Scholar 

  16. Hull, C.M.: Duality and the signature of space-time. JHEP 11, 017 (1998)

    ADS  MathSciNet  Google Scholar 

  17. Marino, M., Schiappa, R., Schwick, M.: New Instantons for matrix models

  18. Schiappa, R., Schwick, M., Tamarin, N.: All the D-branes of resurgence

  19. Kimura, T.: Aspects of supergroup gauge theory. Int. J. Mod. Phys. A 38(03), 2330001 (2023)

    ADS  MathSciNet  Google Scholar 

  20. Kimura, T., Pestun, V.: Super instanton counting and localization

  21. Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994)

    ADS  MathSciNet  Google Scholar 

  22. Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory. Nucl. Phys. B 426, 19–52 (1994)

    ADS  MathSciNet  Google Scholar 

  23. Kimura, T., Sugimoto, Y.: Topological vertex/anti-vertex and supergroup gauge theory. JHEP 04, 081 (2020)

    ADS  MathSciNet  Google Scholar 

  24. Nekrasov, N., Shadchin, S.: ABCD of instantons. Commun. Math. Phys. 252, 359–391 (2004)

    ADS  MathSciNet  Google Scholar 

  25. Marino, M., Wyllard, N.: A Note on instanton counting for N=2 gauge theories with classical gauge groups. JHEP 05, 021 (2004)

    ADS  MathSciNet  Google Scholar 

  26. Kimura, T.: Instanton Counting. Quantum geometry and algebra, Springer, Berlin (2021)

    Google Scholar 

  27. Losev, A., Nekrasov, N., Shatashvili, S.L.: Testing Seiberg-Witten solution. NATO Sci. Ser. C 520, 359–372 (1999)

    MathSciNet  Google Scholar 

  28. Losev, A., Nekrasov, N., Shatashvili, S.L.: Issues in topological gauge theory. Nucl. Phys. B 534, 549–611 (1998)

    ADS  MathSciNet  Google Scholar 

  29. Moore, G.W., Nekrasov, N., Shatashvili, S.: Integrating over Higgs branches. Commun. Math. Phys. 209, 97–121 (2000)

    ADS  MathSciNet  Google Scholar 

  30. Hollands, L., Keller, C.A., Song, J.: From SO/Sp instantons to W-algebra blocks. JHEP 03, 053 (2011)

    ADS  MathSciNet  Google Scholar 

  31. Zhang, X.: Seiberg-Witten geometry of four-dimensional \({{\cal{N} }}\)=2 SO-USp quiver gauge theories. Phys. Rev. D 100(12), 125015 (2019)

    ADS  MathSciNet  Google Scholar 

  32. Danielsson, U.H., Sundborg, B.: The Moduli space and monodromies of \(N=2\) supersymmetric SO(\(2r+1\)) Yang-Mills theory. Phys. Lett. B 358, 273–280 (1995)

    ADS  MathSciNet  Google Scholar 

  33. Brandhuber, A., Landsteiner, K.: On the monodromies of \(N=2\) supersymmetric Yang-Mills theory with gauge group SO(\(2n\)). Phys. Lett. B 358, 73–80 (1995)

    ADS  MathSciNet  Google Scholar 

  34. Martinec, E.J., Warner, N.P.: Integrable systems and supersymmetric gauge theory. Nucl. Phys. B 459, 97–112 (1996)

    ADS  MathSciNet  Google Scholar 

  35. Nekrasov, N., Pestun, V.: Seiberg-Witten geometry of four-dimensional \({{\cal{N} }}=2\) quiver gauge theories. SIGMA 19, 047 (2023)

    MathSciNet  Google Scholar 

  36. Frappat, L., Sorba, P., Sciarrino, A.: Dictionary on Lie superalgebras

  37. Kimura, T., Zhu, R.: Web construction of ABCDEFG and affine quiver gauge theories. JHEP 09, 025 (2019)

    ADS  MathSciNet  Google Scholar 

  38. Kimura, T., Pestun, V.: W-algebras, quiver. Lett. Math. Phys. 108(6), 1351–1381 (2018)

    ADS  MathSciNet  Google Scholar 

  39. Kimura, T., Pestun, V.: Quiver elliptic W-algebras. Lett. Math. Phys. 108(6), 1383–1405 (2018)

    ADS  MathSciNet  Google Scholar 

  40. Kimura, T., Pestun, V.: Fractional quiver W-algebras. Lett. Math. Phys. 108(11), 2425–2451 (2018)

    ADS  MathSciNet  Google Scholar 

  41. Hanany, A., Zaffaroni, A.: Issues on orientifolds: on the brane construction of gauge theories with SO(2n) global symmetry. JHEP 07, 009 (1999)

    ADS  MathSciNet  Google Scholar 

  42. Kapustin, A.: D(n) quivers from branes. JHEP 12, 015 (1998)

    ADS  MathSciNet  Google Scholar 

  43. Chen, H., Kimura, T., Lee, N.: Quantum integrable systems from supergroup gauge theories. JHEP 09, 104 (2020)

    ADS  MathSciNet  Google Scholar 

  44. Zafrir, G.: Brane webs and \(O5\)-planes. JHEP 03, 109 (2016)

    ADS  Google Scholar 

  45. Aganagic, M., Klemm, A., Marino, M., Vafa, C.: The topological vertex. Commun. Math. Phys. 254, 425–478 (2005)

    ADS  MathSciNet  Google Scholar 

  46. Awata, H., Kanno, H.: Instanton counting. Macdonald functions and the moduli space of D-branes. JHEP 05, 039 (2005)

    ADS  MathSciNet  Google Scholar 

  47. Iqbal, A., Kozcaz, C., Vafa, C.: The Refined topological vertex. JHEP 10, 069 (2009)

    ADS  MathSciNet  Google Scholar 

  48. Kim, S., Yagi, F.: Topological vertex formalism with O5-plane. Phys. Rev. D 97(2), 026011 (2018)

    ADS  MathSciNet  Google Scholar 

  49. Bourgine, J.-E., Fukuda, M., Matsuo, Y., Zhu, R.: Reflection states in Ding-Iohara-Miki algebra and brane-web for D-type quiver. JHEP 12, 015 (2017)

    ADS  MathSciNet  Google Scholar 

  50. Hayashi, H., Zhu, R.: More on topological vertex formalism for 5-brane webs with O5-plane. JHEP 04, 292 (2021)

    ADS  MathSciNet  Google Scholar 

  51. Nawata, S., Zhu, R.: Instanton counting and O-vertex. JHEP 09, 190 (2021)

    ADS  MathSciNet  Google Scholar 

  52. Kimura, T., Nieri, F.: Intersecting defects and supergroup gauge theory. J. Phys. A 54(43), 435401 (2021)

    MathSciNet  Google Scholar 

  53. Nieri, F.: Defects at the tntersection: the supergroup side, Springer Proc. Math. Stat. 396, 223–234 (2022)

  54. Gomis, J., Le Floch, B., Pan, Y., Peelaers, W.: Intersecting surface defects and two-dimensional CFT. Phys. Rev. D 96(4), 045003 (2017)

    ADS  MathSciNet  Google Scholar 

  55. Pan, Y., Peelaers, W.: Intersecting surface defects and instanton partition functions. JHEP 07, 073 (2017)

    ADS  MathSciNet  Google Scholar 

  56. Gorsky, A., Le Floch, B., Milekhin, A., Sopenko, N.: Surface defects and instanton–vortex interaction. Nucl. Phys. B 920, 122–156 (2017)

    ADS  MathSciNet  Google Scholar 

  57. Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010)

    ADS  MathSciNet  Google Scholar 

  58. Wyllard, N.: A(N-1) conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories. JHEP 11, 002 (2009)

    ADS  MathSciNet  Google Scholar 

  59. Awata, H., Yamada, Y.: Five-dimensional AGT conjecture and the deformed virasoro algebra. JHEP 01, 125 (2010)

    ADS  MathSciNet  Google Scholar 

  60. Awata, H., Yamada, Y.: Five-dimensional AGT relation and the deformed beta-ensemble. Prog. Theor. Phys. 124, 227–262 (2010)

    ADS  Google Scholar 

  61. Awata, H., Fujino, H., Ohkubo, Y.: Crystallization of deformed Virasoro algebra, Ding-Iohara-Miki algebra and 5D AGT correspondence. J. Math. Phys. 58(7), 071704 (2017)

    ADS  MathSciNet  Google Scholar 

  62. Awata, H., Feigin, B., Shiraishi, J.: Quantum algebraic approach to refined topological vertex. JHEP 03, 041 (2012)

    ADS  MathSciNet  Google Scholar 

  63. Noshita, G.: 5d AGT correspondence of supergroup gauge theories from quantum toroidal \( \mathfrak{gl} _{1}\). JHEP 12, 157 (2022)

    ADS  MathSciNet  Google Scholar 

  64. Gaiotto, D.: N=2 dualities. JHEP 08, 034 (2012)

    ADS  Google Scholar 

  65. Hollands, L., Keller, C.A., Song, J.: Towards a 4d/2d correspondence for Sicilian quivers. JHEP 10, 100 (2011)

    ADS  MathSciNet  Google Scholar 

  66. Nakajima, H.: Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras. Duke Math. J. 76(2), 365–416 (1994)

    MathSciNet  Google Scholar 

  67. Nakajima, H.: Quiver varieties and Kac-Moody algebras. Duke Math. J. 91, 515–560 (1998)

    MathSciNet  Google Scholar 

  68. Thind, J.: Quiver representations in the super-category and gabriel’s theorem for \(A(m,n)\)

  69. Bovdi, V.A., Zubkov, A.N.: Super-representations of quivers and related polynomial semi-invariants. Int. J. Algebra Comput. 30(04), 883–902 (2020)

    MathSciNet  Google Scholar 

  70. Rimanyi, R., Rozansky, L.: New quiver-like varieties and lie superalgebras. Commun. Math. Phys. 400(1), 341–370 (2023)

    ADS  MathSciNet  Google Scholar 

  71. Orlando, D., Reffert, S.: Relating gauge theories via gauge/bethe correspondence. JHEP 10, 071 (2010)

    ADS  MathSciNet  Google Scholar 

  72. Nekrasov, N.: Superspin chains and supersymmetric gauge theories. JHEP 03, 102 (2019)

    ADS  MathSciNet  Google Scholar 

  73. Zenkevich, Y.: Higgsed network calculus. JHEP 08, 149 (2021)

    ADS  MathSciNet  Google Scholar 

  74. Ishtiaque, N., Moosavian, S.F., Raghavendran, S., Yagi, J.: Superspin chains from superstring theory. SciPost Phys. 13(4), 083 (2022)

    ADS  MathSciNet  Google Scholar 

  75. Varadarajan, V. S.: Supersymmetry for mathematicians: an introduction, Am. Math. Soc. (2004)

  76. Berezin, F.A.: Introduction to Superanalysis. Springer, Berlin (1987)

    Google Scholar 

  77. Evans, N.J., Johnson, C.V., Shapere, A.D.: Orientifolds, branes, and duality of 4-D gauge theories. Nucl. Phys. B 505, 251–271 (1997)

    ADS  MathSciNet  Google Scholar 

  78. Giveon, A., Kutasov, D.: Dynamics, brane, theory. Gauge. Rev. Mod. Phys. 71, 983–1084 (1999)

  79. Zwiebach, B.: A First Course in String Theory. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  80. Gimon, E.G., Polchinski, J.: Consistency conditions for orientifolds and D-manifolds. Phys. Rev. D 54, 1667–1676 (1996)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Y.S. thanks Satoshi Nawata for explaining the effect of fermionic zero modes in orthosymplectic quiver gauge theories and Go Noshita for explaining details on negative branes and T–duality, as well as giving their constructive comments on the manuscript. Y.S. also thanks Cumrun Vafa for his encouragement and beneficial discussions during his stay in ICTP. Part of this work has been presented in French Strings Meeting 2023 at LAPTh, Annecy, France and New Pathways in Exploration of Quantum Field Theory and Quantum Gravity beyond Supersymmetry III at ICTP, Trieste, Italy. Y.S. would like to thank the organizers for their hospitality. The authors would like to thank the anonymous referees for their valuable advice. This work was in part supported by EIPHI Graduate School (No. ANR-17-EURE-0002) and Bourgogne-Franche-Comté region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilu Shao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Supermathematics

1.1 A.1 Superlinear algebra

We will give a very brief introduction on supergroups first, following [26]. For more about supergroups and its mathematical meanings, we refer the readers to [1, 36, 75, 76].

A supervector space is a \(\mathbb {Z}_2\)-graded vector space consists of both commuting and anti-commuting variables

$$\begin{aligned} V=V_0 \oplus V_1. \end{aligned}$$
(A.1)

Its superdimension

$$\begin{aligned} \text {sdim} V=\sum _{\sigma =0,1}(-1)^\sigma \text {dim} V_\sigma =\text {dim} V_0-\text {dim} V_1 \end{aligned}$$
(A.2)

can be negative.

A linear map M between supervector space V and W can be written in terms of a supermatrix

$$\begin{aligned} M=\left( \begin{array}{ll} M_{00} &{}\quad M_{01} \\ M_{10} &{}\quad M_{11} \end{array}\right) \end{aligned}$$
(A.3)

with \(M_{\sigma \sigma ^{\prime }} \in \text {Hom}\left( V_\sigma , W_{\sigma ^{\prime }}\right) \). The corresponding superdeterminant (or Berezinian) is

$$\begin{aligned} \text {sdet} M=\frac{\text {det}\left( M_{00}-M_{10} M_{11}^{-1} M_{01}\right) }{\text {det} M_{11}}. \end{aligned}$$
(A.4)

And the supertrace is

$$\begin{aligned} \text {str} M=\text {tr}_0 M-\text {tr}_1 M=\text {tr} M_{00}-\text {tr} M_{11}. \end{aligned}$$
(A.5)

Also, we define the supertranspositon of a supermatrix by

$$\begin{aligned} M^{\text{ st } }=\left( \begin{array}{ll} M_{00} &{} M_{01} \\ M_{10} &{} M_{11} \end{array}\right) ^{\text{ st } }=\left( \begin{array}{cc} M_{00}^{\text {t}} &{} M_{01}^{\text {t}} \\ -M_{10}^{\text {t}} &{} M_{11}^{\text {t}} \end{array}\right) \end{aligned}$$
(A.6)

where \(A^{\text {t}}\) denotes the ordinary transpose operation. We can check that \(\left( M_1 M_2\right) ^{\text{ st } }=M_2^{\text{ st } } M_1^{\text{ st } }\), but \(\left( M^{\text{ st } }\right) ^{\text{ st } } \ne M\) in general.

The Hermitian conjugation of a supermatrix is defined as follows:

$$\begin{aligned} M^{\dag }={{\bar{M}}}^{\textrm{st}} \end{aligned}$$
(A.7)

which satisfies .

1.2 A.2 Supergroups and superalgebras

1.2.1 A.2.1 Classification of classical supergroups

Like the ordinary classification of semi-simple Lie groups (algebras), we can also classify classical supergroups (superalgebras). The results are roughly given by the following table [5]:

figure q

For details from the mathematical side, see [36].

1.2.2 A.2.2 Unitary supergroup

We define the squared norm

(A.9)

for \(\Psi \in \mathbb {C}^{n|m}\). Then the A-type (unitary supergroup) \(\text {U}(n|m)\) is defined as the isometry group with respect to the supervector space \(\mathbb {C}^{n|m}\) such that

(A.10)

Thus, we have

(A.11)

The bosonic subgroup of \(\text {U}(n|m)\) is given by \(\text {U}(n) \times \text {U}(m)\), and the fermonic part is given by \({{\textbf {n}}} \times {{{\textbf {m}}}}\) and \( {{{\textbf {n}}}} \times {{\textbf {m}}}\) bifundamental representations with the dimension 2nm.

1.2.3 A.2.3 Orthosymplectic supergroup

Consider the real supervector space \(\mathbb {R}^{n|2m}\). The squared norm is defined by:

$$\begin{aligned} |\Psi |^2=\Psi ^{\text {t}} \Omega \Psi =\text {str}\left( \Omega \Psi \Psi ^{\text {t}}\right) \end{aligned}$$
(A.12)

with the skew-symmetric form

$$\begin{aligned} \Omega =\left( \begin{array}{cc} \mathbb {1}_n &{} 0 \\ 0 &{} \mathbb {1}_m \otimes {{\textbf {j}}} \end{array}\right) , \quad {{\textbf {j}}}=\left( \begin{array}{cc} 0 &{} 1 \\ -1 &{} 0 \end{array}\right) \end{aligned}$$
(A.13)

Then, the isometry group of \(\mathbb {R}^{n|2m}\) is given by

$$\begin{aligned} |\Psi |^2=|O \Psi |^2, \quad O^{\text{ st } } \Omega O=\Omega . \end{aligned}$$
(A.14)

Thus, we have

$$\begin{aligned} \text {OSp}(n|m)=\left\{ O \in \text {GL}\left( \mathbb {R}^{n|2m}\right) \mid O^{\text {st}} \Omega O=\Omega \right\} \end{aligned}$$
(A.15)

The bosonic part of \({{\,\textrm{OSp}\,}}(n|m)\) is thus given by \(\text {O}(n) \times \text {Sp}(m)\), and the fermonic part is given by \({{\textbf {n}}} \times {\textbf {2m}}\) bifundamental representation with the dimension 2nm.

1.2.4 A.2.4 Superalgebras

Superalgebra is also graded

$$\begin{aligned} {\mathfrak {A}}={\mathfrak {A}}_0 \oplus {\mathfrak {A}}_1 \end{aligned}$$
(A.16)

with the supercommutator

$$\begin{aligned}{}[a, b]=a b-(-1)^{|a||b|} b a \end{aligned}$$
(A.17)

for \(a,b\in {\mathfrak {A}}\). Here, we denote the parity of an element \(x \in V_\sigma \) by \(|x|=\sigma \) for \(\sigma =0,1\), which is called even/bosonic for \(\sigma =0\), and odd/fermionic for \(\sigma =1\). The supercommutator also satisfies the super-version of Jacobi identity

$$\begin{aligned}{}[a,[b, c]]=[[a, b], c]+(-1)^{|a||b|}[b,[a, c]] . \end{aligned}$$
(A.18)

For example, we denote

$$\begin{aligned} \mathfrak {s l}_{n | m}=\left\{ a \in {\mathfrak {A}}={\mathfrak {A}}_0 \oplus {\mathfrak {A}}_1, \text {dim} {\mathfrak {A}}_0=n, \text {dim} {\mathfrak {A}}_1=m | \text {str} a=0\right\} , \end{aligned}$$
(A.19)

which corresponds to the A-type supergroup \(A_{n-1|m-1}\).

B Orientifold planes

In order to realize the Hanany–Witten construction of BCD-type gauge theory, we need to introduce the orientifold planes (or O-plane), see [77, 78]. A very pedagogical review is [79, Problem 15.4]. Here, we only briefly introduce the effect of O4-planes.

For a BCD-type gauge theory, the brane configuration is:

figure r

The world volume of an O-plane reflects the supersymmetry generators, and thus results in the space-time reflection \(\left( x^4, x^5, x^7, x^8, x^9\right) \rightarrow \left( -x^4,-x^5,-x^7,-x^8,-x^9\right) \) and the gauging of world sheet parity \(\Omega \).

Without the O4-plane, the worldvolume of coincident D4-branes will make up a \(\text {U}(n)\) gauge theory. If all D4-branes are coincident and lying on the O4-plane, the open string modes between the D4-branes and their mirror image under O4-plane will give rise to an \({{\,\textrm{SO}\,}}\left( 2n \right) \) or an \(\text {Sp}\left( n\right) \) gauge theory, depending on the choice of whether \(\Omega ^2=\pm 1\) [80]. And for the case of \({{\,\textrm{SO}\,}}\left( 2n+1\right) \), an extra (half) D4-brane should be placed at on the O4-plane.

The brane contents of a BCD-type gauge theory are listed as follows:

figure s

in which “−” means extending direction and “\(\bullet \)” means the brane is pointlike in this direction. Notice the D4\(^+\)-brane is finite along \(x^6\) direction. In our BCD-type supergroup gauge theory, we also need to consider D4\(^-\)-branes in addition to ordinary D4\(^+\)-branes. The extra brane contents are:

figure t

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, T., Shao, Y. Orthosymplectic superinstanton counting and brane dynamics. Lett Math Phys 113, 122 (2023). https://doi.org/10.1007/s11005-023-01740-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01740-5

Keywords

Mathematics Subject Classification

Navigation