Skip to main content
Log in

A non-abelian self-dual gauge theory in 5 + 1 dimensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct a non-Abelian gauge theory of chiral 2-forms (self-dual gauge fields) in 6 dimensions with a spatial direction compactified on a circle of radius R. It has the following two properties. (1) It reduces to the Yang-Mills theory in 5 dimensions for small R. (2) It is equivalent to the Lorentz-invariant theory of Abelian chiral 2-forms when the gauge group is Abelian. Previous no-go theorems prohibiting non-Abelian deformations of the chiral 2-form gauge theory are circumvented by introducing nonlocality along the compactified dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. E. Witten, Five-branes and M-theory on an orbifold, Nucl. Phys. B 463 (1996) 383 [hep-th/9512219] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. N. Seiberg, Non-trivial fixed points of the renormalization group in six dimensions, Phys. Lett. B 390 (1997) 169 [hep-th/9609161] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. E. Witten, Five-brane effective action in M-theory, J. Geom. Phys. 22 (1997) 103 [hep-th/9610234] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. N. Seiberg, Notes on theories with 16 supercharges, Nucl. Phys. Proc. Suppl. 67 (1998) 158 [hep-th/9705117] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. D.S. Berman, M-theory branes and their interactions, Phys. Rept. 456 (2008) 89 [arXiv:0710.1707] [SPIRES].

    Article  ADS  Google Scholar 

  7. W.-M. Chen and P.-M. Ho, Lagrangian formulations of self-dual gauge theories in diverse dimensions, Nucl. Phys. B 837 (2010) 1 [arXiv:1001.3608] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. P. Pasti, D.P. Sorokin and M. Tonin, Note on manifest Lorentz and general coordinate invariance in duality symmetric models, Phys. Lett. B 352 (1995) 59 [hep-th/9503182] [SPIRES].

    ADS  Google Scholar 

  9. P. Pasti, D.P. Sorokin and M. Tonin, Duality symmetric actions with manifest space-time symmetries, Phys. Rev. D 52 (1995) 4277 [hep-th/9506109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. P. Pasti, D.P. Sorokin and M. Tonin, Space-time symmetries in duality symmetric models, hep-th/9509052 [SPIRES].

  11. P. Pasti, D.P. Sorokin and M. Tonin, On Lorentz invariant actions for chiral p-forms, Phys. Rev. D 55 (1997) 6292 [hep-th/9611100] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. P. Pasti, D.P. Sorokin and M. Tonin, Covariant action for a D = 11 five-brane with the chiral field, Phys. Lett. B 398 (1997) 41 [hep-th/9701037] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. P.S. Howe and E. Sezgin, D = 11, p = 5, Phys. Lett. B 394 (1997) 62 [hep-th/9611008] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. I.A. Bandos et al., Covariant action for the super-five-brane of M-theory, Phys. Rev. Lett. 78 (1997) 4332 [hep-th/9701149] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. M. Aganagic, J. Park, C. Popescu and J.H. Schwarz, World-volume action of the M-theory five-brane, Nucl. Phys. B 496 (1997) 191 [hep-th/9701166] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. P.S. Howe, E. Sezgin and P.C. West, Covariant field equations of the M-theory five-brane, Phys. Lett. B 399 (1997) 49 [hep-th/9702008] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. I.A. Bandos et al., On the equivalence of different formulations of the M-theory five-brane, Phys. Lett. B 408 (1997) 135 [hep-th/9703127] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. P.-M. Ho and Y. Matsuo, M5 from M2, JHEP 06 (2008) 105 [arXiv:0804.3629] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. P.-M. Ho, Y. Imamura, Y. Matsuo and S. Shiba, M5-brane in three-form flux and multiple M2-branes, JHEP 08 (2008) 014 [arXiv:0805.2898] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. P.-M. Ho and Y. Matsuo, A toy model of open membrane field theory in constant 3-form flux, Gen. Rel. Grav. 39 (2007) 913 [hep-th/0701130] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. J. Bagger and N. Lambert, Comments on multiple M2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. P. Pasti, I. Samsonov, D. Sorokin and M. Tonin, BLG-motivated Lagrangian formulation for the chiral two-form gauge field in D = 6 and M5-branes, Phys. Rev. D 80 (2009) 086008 [arXiv:0907.4596] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. K. Furuuchi, Non-linearly extended self-dual relations from the Nambu-bracket description of M5-brane in a constant C-field background, JHEP 03 (2010) 127 [arXiv:1001.2300] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. P.-M. Ho, A concise review on M5-brane in large C-field background, Chin. J. Phys. 48 (2010) 1 [arXiv:0912.0445] [SPIRES].

    ADS  Google Scholar 

  28. C.-H. Chen, P.-M. Ho and T. Takimi, A no-go theorem for M5-brane theory, JHEP 03 (2010) 104 [arXiv:1001.3244] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. L. Breen and W. Messing, Differential geometry of gerbes, math/0106083. MATH/0106083;

  30. J.C. Baez, Higher Yang-Mills theory, hep-th/0206130 [SPIRES].

  31. P. Aschieri and B. Jurčo, Gerbes, M5-brane anomalies and E 8 gauge theory, JHEP 10 (2004) 068 [hep-th/0409200] [SPIRES].

    Article  ADS  Google Scholar 

  32. J.C. Baez and J. Huerta, An invitation to higher gauge theory, arXiv:1003.4485 [SPIRES].

  33. A. Lahiri, The dynamical nonabelian two form: BRST quantization, Phys. Rev. D 55 (1997) 5045 [hep-ph/9609510] [SPIRES].

    ADS  Google Scholar 

  34. R.R. Landim and C.A.S. Almeida, Topologically massive nonabelian BF models in arbitrary space-time dimensions, Phys. Lett. B 504 (2001) 147 [hep-th/0010050] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. A. Lahiri, Local symmetries of the non-Abelian two-form, J. Phys. A 35 (2002) 8779 [hep-th/0109220] [SPIRES].

    Google Scholar 

  36. R.P. Malik, Nilpotent (anti-)BRST symmetry transformations for dynamical non-Abelian 2-form gauge theory: superfield formalism, Europhys. Lett. 91 (2010) 51003 [arXiv:1005.5067] [SPIRES].

    Article  ADS  Google Scholar 

  37. S. Krishna, A. Shukla and R.P. Malik, Topologically massive non-Abelian theory: superfield formalism, arXiv:1008.2649 [SPIRES].

  38. C. Hofman, Nonabelian 2-forms, hep-th/0207017 [SPIRES].

  39. U. Schreiber, Nonabelian 2-forms and loop space connections from SCFT deformations, hep-th/0407122 [SPIRES].

  40. A. Gustavsson, Selfdual strings and loop space Nahm equations, JHEP 04 (2008) 083 [arXiv:0802.3456] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. C. Sämann, Constructing self-dual strings, Commun. Math. Phys. 305 (2011) 513 [arXiv:1007.3301] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  42. C. Papageorgakis and C. Sämann, The 3-Lie algebra (2,0) tensor multiplet and equations of motion on loop space, JHEP 05 (2011) 099 [arXiv:1103.6192] [SPIRES].

    Article  ADS  Google Scholar 

  43. M. Henneaux and B. Knaepen, All consistent interactions for exterior form gauge fields, Phys. Rev. D 56 (1997) 6076 [hep-th/9706119] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  44. M. Henneaux, Uniqueness of the Freedman-Townsend interaction vertex for two-form gauge fields, Phys. Lett. B 368 (1996) 83 [hep-th/9511145] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  45. M. Henneaux and B. Knaepen, The Wess-Zumino consistency condition for p-form gauge theories, Nucl. Phys. B 548 (1999) 491 [hep-th/9812140] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. X. Bekaert, M. Henneaux and A. Sevrin, Deformations of chiral two-forms in six dimensions, Phys. Lett. B 468 (1999) 228 [hep-th/9909094] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  47. X. Bekaert, Interactions of chiral two-forms, hep-th/9911109 [SPIRES].

  48. M. Henneaux and B. Knaepen, A theorem on first-order interaction vertices for free p-form gauge fields, Int. J. Mod. Phys. A 15 (2000) 3535 [hep-th/9912052] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  49. X. Bekaert, M. Henneaux and A. Sevrin, Chiral forms and their deformations, Commun. Math. Phys. 224 (2001) 683 [hep-th/0004049] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. X. Bekaert and S. Cucu, Deformations of duality-symmetric theories, Nucl. Phys. B 610 (2001) 433 [hep-th/0104048] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. E. Witten, Conformal field theory in four and six dimensions, arXiv:0712.0157 [SPIRES].

  52. E. Witten, Geometric Langlands from six dimensions, arXiv:0905.2720 [SPIRES].

  53. M.R. Douglas, On D = 5 super Yang-Mills theory and (2,0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [SPIRES].

    ADS  Google Scholar 

  54. N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes, D4-branes and Quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Ming Ho.

Additional information

ArXiv ePrint: 1104.4040

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, PM., Huang, KW. & Matsuo, Y. A non-abelian self-dual gauge theory in 5 + 1 dimensions. J. High Energ. Phys. 2011, 21 (2011). https://doi.org/10.1007/JHEP07(2011)021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)021

Keywords

Navigation