Advertisement

W + W production at the LHC: fiducial cross sections and distributions in NNLO QCD

  • Massimiliano GrazziniEmail author
  • Stefan Kallweit
  • Stefano Pozzorini
  • Dirk Rathlev
  • Marius Wiesemann
Open Access
Regular Article - Theoretical Physics

Abstract

We consider QCD radiative corrections to W + W production at the LHC and present the first fully differential predictions for this process at next-to-next-to-leading order (NNLO) in perturbation theory. Our computation consistently includes the leptonic decays of the W bosons, taking into account spin correlations, off-shell effects and non-resonant contributions. Detailed predictions are presented for the different-flavour channel \( pp\to {\mu}^{+}{e}^{-}{\nu}_{\mu }{\overline{\nu}}_e+X \) at \( \sqrt{s}=8 \) and 13 TeV. In particular, we discuss fiducial cross sections and distributions in the presence of standard selection cuts used in experimental W + W and HW + W analyses at the LHC. The inclusive W + W cross section receives large NNLO corrections, and, due to the presence of a jet veto, typical fiducial cuts have a sizeable influence on the behaviour of the perturbative expansion. The availability of differential NNLO predictions, both for inclusive and fiducial observables, will play an important role in the rich physics programme that is based on precision studies of W + W signatures at the LHC.

Keywords

QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CDF collaboration, T. Aaltonen et al., Measurement of the W + W Production Cross section and Search for Anomalous WWγ and WWZ Couplings in pp Collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 104 (2010) 201801 [arXiv:0912.4500] [INSPIRE].
  2. [2]
    D0 collaboration, V.M. Abazov et al., Measurements of WW and WZ production in W + jets final states in \( p\overline{p} \) collisions, Phys. Rev. Lett. 108 (2012) 181803 [arXiv:1112.0536] [INSPIRE].
  3. [3]
    ATLAS collaboration, Measurement of W + W production in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector and limits on anomalous WWZ and WWγ couplings, Phys. Rev. D 87 (2013) 112001 [arXiv:1210.2979] [INSPIRE].
  4. [4]
    CMS collaboration, Measurement of the W + W Cross section in pp Collisions at \( \sqrt{s}=7 \) TeV and Limits on Anomalous WWγ and WWZ couplings, Eur. Phys. J. C 73 (2013) 2610 [arXiv:1306.1126] [INSPIRE].
  5. [5]
    ATLAS collaboration, Measurement of the W + W production cross section in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2014-033 (2014).
  6. [6]
    ATLAS collaboration, Measurement of total and differential W + W production cross sections in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector and limits on anomalous triple-gauge-boson couplings, arXiv:1603.01702 [INSPIRE].
  7. [7]
    CMS collaboration, Measurement of W + W and ZZ production cross sections in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 721 (2013) 190 [arXiv:1301.4698] [INSPIRE].
  8. [8]
    CMS collaboration, Measurement of the W + W cross section in pp collisions at \( \sqrt{s}=8 \) TeV and limits on anomalous gauge couplings, Eur. Phys. J. C 76 (2016) 401 [arXiv:1507.03268] [INSPIRE].
  9. [9]
    ATLAS, CDF, CMS and D0 collaborations, Diboson Production at LHC and Tevatron, Int. J. Mod. Phys. Conf. Ser. 31 (2014) 1460279 [arXiv:1403.1415] [INSPIRE].
  10. [10]
    D.E. Morrissey, T. Plehn and T.M.P. Tait, Physics searches at the LHC, Phys. Rept. 515 (2012) 1 [arXiv:0912.3259] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  12. [12]
    ATLAS collaboration, Observation and measurement of Higgs boson decays to WW * with the ATLAS detector, Phys. Rev. D 92 (2015) 012006 [arXiv:1412.2641] [INSPIRE].
  13. [13]
    ATLAS collaboration, Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to WW eνμν with the ATLAS detector at \( \sqrt{s}=8 \) TeV, arXiv:1604.02997 [INSPIRE].
  14. [14]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  15. [15]
    CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].
  16. [16]
    CMS collaboration, Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states, JHEP 01 (2014) 096 [arXiv:1312.1129] [INSPIRE].
  17. [17]
    N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev. D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC: Complementary results from HWW, Phys. Rev. D 89 (2014) 053011 [arXiv:1312.1628] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J. Ohnemus, An order α s calculation of hadronic W W + production, Phys. Rev. D 44 (1991) 1403 [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Frixione, A next-to-leading order calculation of the cross-section for the production of W + W pairs in hadronic collisions, Nucl. Phys. B 410 (1993) 280 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].ADSGoogle Scholar
  23. [23]
    L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order α s : Lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].ADSGoogle Scholar
  24. [24]
    L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s ) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Bierweiler, T. Kasprzik, J.H. Kühn and S. Uccirati, Electroweak corrections to W-boson pair production at the LHC, JHEP 11 (2012) 093 [arXiv:1208.3147] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Baglio, L.D. Ninh and M.M. Weber, Massive gauge boson pair production at the LHC: a next-to-leading order story, Phys. Rev. D 88 (2013) 113005 [arXiv:1307.4331] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Billóni, S. Dittmaier, B. Jäger and C. Speckner, Next-to-leading order electroweak corrections to ppW + W → 4 leptons at the LHC in double-pole approximation, JHEP 12 (2013) 043 [arXiv:1310.1564] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D.A. Dicus, C. Kao and W.W. Repko, Gluon Production of Gauge Bosons, Phys. Rev. D 36 (1987) 1570 [INSPIRE].ADSGoogle Scholar
  30. [30]
    E.W.N. Glover and J.J. van der Bij, Vector boson pair production via gluon fusion, Phys. Lett. B 219 (1989) 488 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced WW background to Higgs boson searches at the LHC, JHEP 03 (2005) 065 [hep-ph/0503094] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W-boson pair production at the LHC, JHEP 12 (2006) 046 [hep-ph/0611170] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W + W , WZ and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    T. Melia, K. Melnikov, R. Rontsch, M. Schulze and G. Zanderighi, Gluon fusion contribution to W + W + jet production, JHEP 08 (2012) 115 [arXiv:1205.6987] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    F. Caola, J.M. Henn, K. Melnikov, A.V. Smirnov and V.A. Smirnov, Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in gluon fusion, JHEP 06 (2015) 129 [arXiv:1503.08759] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for ggV 1 V 2 → 4 leptons, JHEP 06 (2015) 197 [arXiv:1503.08835] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to W + W production through gluon fusion, Phys. Lett. B 754 (2016) 275 [arXiv:1511.08617] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to WW+jet production at hadron colliders, Phys. Rev. Lett. 100 (2008) 062003 [arXiv:0710.1577] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-leading order predictions for WW + 1 jet distributions at the LHC, JHEP 12 (2007) 056 [arXiv:0710.1832] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to \( pp/p\overline{p}\to WW+ jet+X \) including leptonic W-boson decays, Nucl. Phys. B 826 (2010) 18 [arXiv:0908.4124] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    J.M. Campbell, D.J. Miller and T. Robens, Next-to-Leading Order Predictions for WW+Jet Production, Phys. Rev. D 92 (2015) 014033 [arXiv:1506.04801] [INSPIRE].ADSGoogle Scholar
  42. [42]
    T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, NLO QCD corrections for W + W pair production in association with two jets at hadron colliders, Phys. Rev. D 83 (2011) 114043 [arXiv:1104.2327] [INSPIRE].ADSGoogle Scholar
  43. [43]
    N. Greiner, G. Heinrich, P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, NLO QCD corrections to the production of W + W plus two jets at the LHC, Phys. Lett. B 713 (2012) 277 [arXiv:1202.6004] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    F. Campanario, M. Rauch and S. Sapeta, W + W production at high transverse momenta beyond NLO, Nucl. Phys. B 879 (2014) 65 [arXiv:1309.7293] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    F. Cascioli, S. Höche, F. Krauss, P. Maierhöfer, S. Pozzorini and F. Siegert, Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton + 0,1 jet production, JHEP 01 (2014) 046 [arXiv:1309.0500] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    T. Gehrmann et al., W + W Production at Hadron Colliders in Next to Next to Leading Order QCD, Phys. Rev. Lett. 113 (2014) 212001 [arXiv:1408.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    F. Caola, J.M. Henn, K. Melnikov, A.V. Smirnov and V.A. Smirnov, Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in quark-antiquark collisions, JHEP 11 (2014) 041 [arXiv:1408.6409] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    T. Gehrmann, A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for \( q\overline{q}^{\prime}\to {V}_1{V}_2\to 4 \) leptons, JHEP 09 (2015) 128 [arXiv:1503.04812] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    P. Nason and G. Zanderighi, W + W , WZ and ZZ production in the POWHEG-BOX-V2, Eur. Phys. J. C 74 (2014) 2702 [arXiv:1311.1365] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Meade, H. Ramani and M. Zeng, Transverse momentum resummation effects in W + W measurements, Phys. Rev. D 90 (2014) 114006 [arXiv:1407.4481] [INSPIRE].ADSGoogle Scholar
  51. [51]
    P.F. Monni and G. Zanderighi, On the excess in the inclusive W + W + νν cross section, JHEP 05 (2015) 013 [arXiv:1410.4745] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    P. Jaiswal and T. Okui, Explanation of the WW excess at the LHC by jet-veto resummation, Phys. Rev. D 90 (2014) 073009 [arXiv:1407.4537] [INSPIRE].ADSGoogle Scholar
  53. [53]
    T. Becher, R. Frederix, M. Neubert and L. Rothen, Automated NNLL + NLO resummation for jet-veto cross sections, Eur. Phys. J. C 75 (2015) 154 [arXiv:1412.8408] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, Transverse-momentum resummation for vector-boson pair production at NNLL+NNLO, JHEP 08 (2015) 154 [arXiv:1507.02565] [INSPIRE].CrossRefGoogle Scholar
  55. [55]
    P. Jaiswal, P. Meade and H. Ramani, Precision diboson measurements and the interplay of pT and jet-veto resummations, Phys. Rev. D 93 (2016) 093007 [arXiv:1509.07118] [INSPIRE].ADSGoogle Scholar
  56. [56]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  57. [57]
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    F. Cascioli, J. Lindert, P. Maierhöfer and S. Pozzorini, The OpenLoops one-loop generator, http://openloops.hepforge.org.
  59. [59]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  61. [61]
    T. Gehrmann and L. Tancredi, Two-loop QCD helicity amplitudes for qqW ± γ and \( q\overline{q}\to {Z}^0\upgamma \), JHEP 02 (2012) 004 [arXiv:1112.1531] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    M. Grazzini, S. Kallweit, D. Rathlev and A. Torre, Zγ production at hadron colliders in NNLO QCD, Phys. Lett. B 731 (2014) 204 [arXiv:1309.7000] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Grazzini, S. Kallweit and D. Rathlev, Wγ and Zγ production at the LHC in NNLO QCD, JHEP 07 (2015) 085 [arXiv:1504.01330] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    F. Cascioli et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735 (2014) 311 [arXiv:1405.2219] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Grazzini, S. Kallweit and D. Rathlev, ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD, Phys. Lett. B 750 (2015) 407 [arXiv:1507.06257] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, W ± Z production at hadron colliders in NNLO QCD, arXiv:1604.08576 [INSPIRE].
  67. [67]
    A. Denner, S. Dittmaier and L. Hofer, COLLIER - A fortran-library for one-loop integrals, PoS(LL2014)071 [arXiv:1407.0087] [INSPIRE].
  68. [68]
    A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, arXiv:1604.06792 [INSPIRE].
  69. [69]
    A. Denner, S. Dittmaier and L. Hofer, Collier - A Complex One-Loop LIbrary with Extended Regularizations, http://collier.hepforge.org.
  70. [70]
    A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  71. [71]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 199 [arXiv:1005.2076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    T. Gehrmann, A. von Manteuffel and L. Tancredi, The VVamp project, http://vvamp.hepforge.org.
  74. [74]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput. 33 (2000) 1 [cs/0004015] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  76. [76]
    D.A. Kosower, Antenna factorization of gauge theory amplitudes, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213] [INSPIRE].ADSGoogle Scholar
  77. [77]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    J. Currie, E.W.N. Glover and S. Wells, Infrared Structure at NNLO Using Antenna Subtraction, JHEP 04 (2013) 066 [arXiv:1301.4693] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    G. Somogyi, Z. Trócsányi and V. Del Duca, Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements, JHEP 06 (2005) 024 [hep-ph/0502226] [INSPIRE].
  81. [81]
    V. Del Duca, C. Duhr, G. Somogyi, F. Tramontano and Z. Trócsányi, Higgs boson decay into b-quarks at NNLO accuracy, JHEP 04 (2015) 036 [arXiv:1501.07226] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    V. Del Duca, C. Duhr, A. Kardos, G. Somogyi and Z. Trócsányi, Three-jet production in electron-positron collisions using the CoLoRFulNNLO method, arXiv:1603.08927 [INSPIRE].
  83. [83]
    M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys. B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  85. [85]
    M. Czakon and D. Heymes, Four-dimensional formulation of the sector-improved residue subtraction scheme, Nucl. Phys. B 890 (2014) 152 [arXiv:1408.2500] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  86. [86]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO, Phys. Rev. D 69 (2004) 076010 [hep-ph/0311311] [INSPIRE].ADSGoogle Scholar
  91. [91]
    T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  92. [92]
    R. Boughezal, C. Focke, X. Liu and F. Petriello, W-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015) 062002 [arXiv:1504.02131] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    R. Boughezal, X. Liu and F. Petriello, N-jettiness soft function at next-to-next-to-leading order, Phys. Rev. D 91 (2015) 094035 [arXiv:1504.02540] [INSPIRE].ADSGoogle Scholar
  94. [94]
    J. Gaunt, M. Stahlhofen, F.J. Tackmann and J.R. Walsh, N-jettiness Subtractions for NNLO QCD Calculations, JHEP 09 (2015) 058 [arXiv:1505.04794] [INSPIRE].CrossRefGoogle Scholar
  95. [95]
    M. Cacciari, F.A. Dreyer, A. Karlberg, G.P. Salam and G. Zanderighi, Fully Differential Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett. 115 (2015) 082002 [arXiv:1506.02660] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    R. Bonciani, S. Catani, M. Grazzini, H. Sargsyan and A. Torre, The q T subtraction method for top quark production at hadron colliders, Eur. Phys. J. C 75 (2015) 581 [arXiv:1508.03585] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett. 108 (2012) 072001 [arXiv:1110.2375] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    G. Ferrera, M. Grazzini and F. Tramontano, Associated ZH production at hadron colliders: the fully differential NNLO QCD calculation, Phys. Lett. B 740 (2015) 51 [arXiv:1407.4747] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    D. de Florian and M. Grazzini, The structure of large logarithmic corrections at small transverse momentum in hadronic collisions, Nucl. Phys. B 616 (2001) 247 [hep-ph/0108273] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    S. Catani and M. Grazzini, Higgs Boson Production at Hadron Colliders: Hard-Collinear Coefficients at the NNLO, Eur. Phys. J. C 72 (2012) 2013 [Erratum ibid. C 72 (2012) 2132] [arXiv:1106.4652] [INSPIRE].
  103. [103]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Vector boson production at hadron colliders: hard-collinear coefficients at the NNLO, Eur. Phys. J. C 72 (2012) 2195 [arXiv:1209.0158] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Universality of transverse-momentum resummation and hard factors at the NNLO, Nucl. Phys. B 881 (2014) 414 [arXiv:1311.1654] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  105. [105]
    T. Gehrmann, T. Lubbert and L.L. Yang, Transverse parton distribution functions at next-to-next-to-leading order: the quark-to-quark case, Phys. Rev. Lett. 109 (2012) 242003 [arXiv:1209.0682] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    T. Gehrmann, T. Luebbert and L.L. Yang, Calculation of the transverse parton distribution functions at next-to-next-to-leading order, JHEP 06 (2014) 155 [arXiv:1403.6451] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    M. Wiesemann, Transverse-momentum resummation of colorless final states at the NNLL+NNLO, arXiv:1602.03401 [INSPIRE].
  108. [108]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  109. [109]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  110. [110]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    S. Catani, D. de Florian and M. Grazzini, Direct Higgs production and jet veto at the Tevatron and the LHC in NNLO QCD, JHEP 01 (2002) 015 [hep-ph/0111164] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    T. Becher and M. Neubert, Factorization and NNLL Resummation for Higgs Production with a Jet Veto, JHEP 07 (2012) 108 [arXiv:1205.3806] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    I.W. Stewart, F.J. Tackmann, J.R. Walsh and S. Zuberi, Jet p T resummation in Higgs production at NNLL′ + NNLO, Phys. Rev. D 89 (2014) 054001 [arXiv:1307.1808] [INSPIRE].ADSGoogle Scholar
  115. [115]
    I. Moult and I.W. Stewart, Jet Vetoes interfering with HWW, JHEP 09 (2014) 129 [arXiv:1405.5534] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    S. Catani and B.R. Webber, Infrared safe but infinite: Soft gluon divergences inside the physical region, JHEP 10 (1997) 005 [hep-ph/9710333] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Massimiliano Grazzini
    • 1
    Email author
  • Stefan Kallweit
    • 2
    • 3
  • Stefano Pozzorini
    • 1
    • 3
  • Dirk Rathlev
    • 4
  • Marius Wiesemann
    • 1
  1. 1.Physik-InstitutUniversität ZürichZürichSwitzerland
  2. 2.PRISMA Cluster of Excellence, Institute of PhysicsJohannes Gutenberg UniversityMainzGermany
  3. 3.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraUSA
  4. 4.Theory Group, Deutsches Elektronen-Synchrotron (DESY)HamburgGermany

Personalised recommendations