Skip to main content
Log in

Electroweak corrections to W-boson pair production at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Vector-boson pair production ranks among the most important Standard-Model benchmark processes at the LHC, not only in view of on-going Higgs analyses. These processes may also help to gain a deeper understanding of the electroweak interaction in general, and to test the validity of the Standard Model at highest energies. In this work, the first calculation of the full one-loop electroweak corrections to on-shell W-boson pair production at hadron colliders is presented. We discuss the impact of the corrections on the total cross section as well as on relevant differential distributions. We observe that corrections due to photon-induced channels can be amazingly large at energies accessible at the LHC, while radiation of additional massive vector bosons does not influence the results significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, S. Chatrchyan et al., Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS, Phys. Lett. B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE].

    Article  ADS  Google Scholar 

  2. ATLAS collaboration, G. Aad et al., Measurement of inclusive jet and dijet production in pp collisions at \( \sqrt{s}=7\,TeV \) using the ATLAS detector, Phys. Rev. D 86 (2012) 014022 [arXiv:1112.6297] [INSPIRE].

    ADS  Google Scholar 

  3. D.A. Ross and M.J.G. Veltman, Neutral currents in neutrino experiments, Nucl. Phys. B 95 (1975) 135 [INSPIRE].

    Article  ADS  Google Scholar 

  4. J.H. Kühn and A. Penin, Sudakov logarithms in electroweak processes, hep-ph/9906545 [INSPIRE].

  5. V.S. Fadin, L. Lipatov, A.D. Martin and M. Melles, Resummation of double logarithms in electroweak high-energy processes, Phys. Rev. D 61 (2000) 094002 [hep-ph/9910338] [INSPIRE].

    ADS  Google Scholar 

  6. M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett. 84 (2000) 4810 [hep-ph/0001142] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J.H. Kühn, A. Penin and V.A. Smirnov, Summing up subleading Sudakov logarithms, Eur. Phys. J. C 17 (2000) 97 [hep-ph/9912503] [INSPIRE].

    Article  ADS  Google Scholar 

  8. W. Beenakker and A. Werthenbach, New insights into the perturbative structure of electroweak Sudakov logarithms, Phys. Lett. B 489 (2000) 148 [hep-ph/0005316] [INSPIRE].

    Article  ADS  Google Scholar 

  9. W. Beenakker and A. Werthenbach, Electroweak two loop Sudakov logarithms for on-shell fermions and bosons, Nucl. Phys. B 630 (2002) 3 [hep-ph/0112030] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Melles, Subleading Sudakov logarithms in electroweak high-energy processes to all orders, Phys. Rev. D 63 (2001) 034003 [hep-ph/0004056] [INSPIRE].

    ADS  Google Scholar 

  11. M. Melles, Resummation of Yukawa enhanced and subleading Sudakov logarithms in longitudinal gauge boson and Higgs production, Phys. Rev. D 64 (2001) 014011 [hep-ph/0012157] [INSPIRE].

    ADS  Google Scholar 

  12. A. Denner, M. Melles and S. Pozzorini, Two loop electroweak angular dependent logarithms at high-energies, Nucl. Phys. B 662 (2003) 299 [hep-ph/0301241] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J.H. Kühn, S. Moch, A.A. Penin and V.A. Smirnov, Next-to-next-to-leading logarithms in four fermion electroweak processes at high-energy, Nucl. Phys. B 616 (2001) 286 [Erratum ibid. B 648 (2003) 455-456] [hep-ph/0106298] [INSPIRE].

    Article  ADS  Google Scholar 

  14. B. Feucht, J.H. Kühn, A.A. Penin and V.A. Smirnov, Two loop Sudakov form-factor in a theory with mass gap, Phys. Rev. Lett. 93 (2004) 101802 [hep-ph/0404082] [INSPIRE].

    Article  ADS  Google Scholar 

  15. B. Jantzen et al., Two-loop electroweak logarithms, Phys. Rev. D 72 (2005) 051301 [Erratum ibid. D 74 (2006) 019901] [hep-ph/0504111] [INSPIRE].

    ADS  Google Scholar 

  16. B. Jantzen and V.A.a. Smirnov, The two-loop vector form-factor in the Sudakov limit, Eur. Phys. J. C 47 (2006) 671 [hep-ph/0603133] [INSPIRE].

  17. B. Jantzen, J.H. Kühn, A.A. Penin and V.A. Smirnov, Two-loop electroweak logarithms in four-fermion processes at high energy, Nucl. Phys. B 731 (2005) 188 [Erratum ibid. B 752 (2006)327-328] [hep-ph/0509157] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 1. Results, Eur. Phys. J. C 18 (2001) 461 [hep-ph/0010201] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 2. Factorization of collinear singularities, Eur. Phys. J. C 21 (2001) 63 [hep-ph/0104127] [INSPIRE].

    Article  ADS  Google Scholar 

  20. S. Pozzorini, Next to leading mass singularities in two loop electroweak singlet form-factors, Nucl. Phys. B 692 (2004) 135 [hep-ph/0401087] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J.-y. Chiu, A. Fuhrer, A.H. Hoang, R. Kelley and A.V. Manohar, Soft-collinear factorizatio and zero-bin subtractions, Phys. Rev. D 79 (2009) 053007 [arXiv:0901.1332] [INSPIRE].

    ADS  Google Scholar 

  22. V. Gribov, Bremsstrahlung of hadrons at high energies, Sov. J. Nucl. Phys. 5 (1967) 280 [Yad. Fiz. 5 (1967) 399] [INSPIRE].

    Google Scholar 

  23. V. Gribov, L. Lipatov and G. Frolov, The leading singularity in the j plane in quantum electrodynamics, Sov. J. Nucl. Phys. 12 (1971) 543 [Yad. Fiz. 12 (1970) 994] [INSPIRE].

    Google Scholar 

  24. L. Lipatov, Massless particle bremsstrahlung theorems for high-energy hadron interactions, Nucl. Phys. B 307 (1988) 705 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. V. Del Duca, High-energy Bremsstrahlung theorems for soft photons, Nucl. Phys. B 345 (1990) 369 [INSPIRE].

    Article  ADS  Google Scholar 

  26. J.H. Kühn, F. Metzler and A. Penin, Next-to-next-to-leading electroweak logarithms in W-pair production at ILC, Nucl. Phys. B 795 (2008) 277 [Erratum ibid. 818 (2009) 135] [arXiv:0709.4055] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J.H. Kühn, F. Metzler, A. Penin and S. Uccirati, Next-to-next-to-leading electroweak logarithms for W-pair production at LHC, JHEP 06 (2011) 143 [arXiv:1101.2563] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Fuhrer, A.V. Manohar, J.-y. Chiu and R. Kelley, Radiative corrections to longitudinal and transverse gauge boson and Higgs production, Phys. Rev. D 81 (2010) 093005 [arXiv:1003.0025] [INSPIRE].

    ADS  Google Scholar 

  29. J.H. Kühn, A. Scharf and P. Uwer, Electroweak effects in top-quark pair production at hadron colliders, Eur. Phys. J. C 51 (2007) 37 [hep-ph/0610335] [INSPIRE].

    Article  ADS  Google Scholar 

  30. W. Bernreuther, M. Fuecker and Z.-G. Si, Weak interaction corrections to hadronic top quark pair production, Phys. Rev. D 74 (2006) 113005 [hep-ph/0610334] [INSPIRE].

    ADS  Google Scholar 

  31. S. Moretti, M. Nolten and D. Ross, Weak corrections to gluon-induced top-antitop hadro-production, Phys. Lett. B 639 (2006) 513 [Erratum ibid. B 660 (2008) 607-609] [hep-ph/0603083] [INSPIRE].

    Article  ADS  Google Scholar 

  32. W. Beenakker et al., Electroweak one loop contributions to top pair production in hadron colliders, Nucl. Phys. B 411 (1994) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  33. J. Kühn, A. Scharf and P. Uwer, Weak effects in b-jet production at hadron colliders, Phys. Rev. D 82 (2010) 013007 [arXiv:0909.0059] [INSPIRE].

    ADS  Google Scholar 

  34. M. Ciccolini, S. Dittmaier and M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev. D 68 (2003) 073003 [hep-ph/0306234] [INSPIRE].

    ADS  Google Scholar 

  35. A. Denner, S. Dittmaier, S. Kallweit and A. Mück, Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK, JHEP 03 (2012) 075 [arXiv:1112.5142] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Ciccolini, A. Denner and S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev. D 77 (2008) 013002 [arXiv:0710.4749] [INSPIRE].

    ADS  Google Scholar 

  37. S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO electroweak corrections to Higgs boson production at hadron colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [INSPIRE].

    Article  ADS  Google Scholar 

  38. G. Passarino, C. Sturm and S. Uccirati, Complete two-loop corrections to H → γγ, Phys. Lett. B 655 (2007) 298 [arXiv:0707.1401] [INSPIRE].

    Article  ADS  Google Scholar 

  39. B.A. Kniehl, Radiative corrections for HZZ in the standard model, Nucl. Phys. B 352 (1991) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  40. B.A. Kniehl, Radiative corrections for HW + W (γ) in the standard model, Nucl. Phys. B 357 (1991) 439 [INSPIRE].

    Article  ADS  Google Scholar 

  41. B.A. Kniehl, Radiative corrections for H\( f\overline{f} \) (γ) in the standard model, Nucl. Phys. B 376 (1992) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Moretti, M. Nolten and D. Ross, Weak corrections to four-parton processes, Nucl. Phys. B 759 (2006) 50 [hep-ph/0606201] [INSPIRE].

    Article  ADS  Google Scholar 

  43. S. Dittmaier, A. Huss and C. Speckner, Weak radiative corrections to dijet production at hadron colliders, arXiv:1210.0438 [INSPIRE].

  44. T. Kasprzik, Vector-boson production at the LHC: QCD and electroweak effects, PoS(EPS-HEP2011)358 [arXiv:1111.1146] [INSPIRE].

  45. J.H. Kühn, A. Kulesza, S. Pozzorini and M. Schulze, Logarithmic electroweak corrections to hadronic Z+1 jet production at large transverse momentum, Phys. Lett. B 609 (2005) 277 [hep-ph/0408308] [INSPIRE].

    Article  ADS  Google Scholar 

  46. J.H. Kühn, A. Kulesza, S. Pozzorini and M. Schulze, One-loop weak corrections to hadronic production of Z bosons at large transverse momenta, Nucl. Phys. B 727 (2005) 368 [hep-ph/0507178] [INSPIRE].

    Article  ADS  Google Scholar 

  47. J.H. Kühn, A. Kulesza, S. Pozzorini and M. Schulze, Electroweak corrections to hadronic photon production at large transverse momenta, JHEP 03 (2006) 059 [hep-ph/0508253] [INSPIRE].

    Article  Google Scholar 

  48. J.H. Kühn, A. Kulesza, S. Pozzorini and M. Schulze, Electroweak corrections to large transverse momentum production of W bosons at the LHC, Phys. Lett. B 651 (2007) 160 [hep-ph/0703283] [INSPIRE].

    Article  ADS  Google Scholar 

  49. J.H. Kühn, A. Kulesza, S. Pozzorini and M. Schulze, Electroweak corrections to hadronic production of W bosons at large transverse momenta, Nucl. Phys. B 797 (2008) 27 [arXiv:0708.0476] [INSPIRE].

    Article  ADS  Google Scholar 

  50. W. Hollik, T. Kasprzik and B. Kniehl, Electroweak corrections to W-boson hadroproduction at finite transverse momentum, Nucl. Phys. B 790 (2008) 138 [arXiv:0707.2553] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak corrections to W + jet hadroproduction including leptonic W-boson decays, JHEP 08 (2009) 075 [arXiv:0906.1656] [INSPIRE].

    Article  ADS  Google Scholar 

  52. A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak corrections to dilepton + jet production at hadron colliders, JHEP 06 (2011) 069 [arXiv:1103.0914] [INSPIRE].

    Article  ADS  Google Scholar 

  53. E. Accomando, A. Denner and S. Pozzorini, Electroweak correction effects in gauge boson pair production at the CERN LHC, Phys. Rev. D 65 (2002) 073003 [hep-ph/0110114] [INSPIRE].

    ADS  Google Scholar 

  54. E. Accomando, A. Denner and A. Kaiser, Logarithmic electroweak corrections to gauge-boson pair production at the LHC, Nucl. Phys. B 706 (2005) 325 [hep-ph/0409247] [INSPIRE].

    Article  ADS  Google Scholar 

  55. E. Accomando, A. Denner and C. Meier, Electroweak corrections to W γ and Zγ production at the LHC, Eur. Phys. J. C 47 (2006) 125 [hep-ph/0509234] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Ohnemus, Orders calculation of hadronic W ± Z production, Phys. Rev. D 44 (1991) 3477 [INSPIRE].

    ADS  Google Scholar 

  57. S. Frixione, A next-to-leading order calculation of the cross-section for the production of W + W pairs in hadronic collisions, Nucl. Phys. B 410 (1993) 280 [INSPIRE].

    Article  ADS  Google Scholar 

  58. J. Ohnemus, Hadronic Zγ production with QCD corrections and leptonic decays, Phys. Rev. D 51 (1995) 1068 [hep-ph/9407370] [INSPIRE].

    ADS  Google Scholar 

  59. J. Ohnemus, Hadronic ZZ, W W + and W ± Z production with QCD corrections and leptonic decays, Phys. Rev. D 50 (1994) 1931 [hep-ph/9403331] [INSPIRE].

    ADS  Google Scholar 

  60. L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for Os) production of W + W , W ± Z, ZZ, W ±γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].

    Article  ADS  Google Scholar 

  61. L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order αs : lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].

    ADS  Google Scholar 

  62. D. De Florian and A. Signer, Wγ and Zγ production at hadron colliders, Eur. Phys. J. C 16 (2000) 105 [hep-ph/0002138] [INSPIRE].

    Article  ADS  Google Scholar 

  63. J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].

    ADS  Google Scholar 

  64. J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].

    Article  ADS  Google Scholar 

  65. S. Frixione and B.R. Webber, The MC@NLO 3.2 event generator, hep-ph/0601192 [INSPIRE].

  66. E.W.N. Glover and J.J. van der Bij, Z boson pair production via gluon fusion, Nucl. Phys. B 321 (1989) 561 [INSPIRE].

    Article  ADS  Google Scholar 

  67. C. Kao and D.A. Dicus, Production of W + W from gluon fusion, Phys. Rev. D 43 (1991) 1555 [INSPIRE].

    ADS  Google Scholar 

  68. M. Dührssen, K. Jakobs, J. van der Bij and P. Marquard, The process ggW W as a background to the Higgs signal at the LHC, JHEP 05 (2005) 064 [hep-ph/0504006] [INSPIRE].

    Article  Google Scholar 

  69. T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W-boson pair production at the LHC, JHEP 12 (2006) 046 [hep-ph/0611170] [INSPIRE].

    Article  ADS  Google Scholar 

  70. J.M. Campbell, R.K. Ellis and C. Williams, Gluon-gluon contributions to W + W production and Higgs interference effects, JHEP 10 (2011) 005 [arXiv:1107.5569] [INSPIRE].

    Article  ADS  Google Scholar 

  71. M. Lemoine and M.J.G. Veltman, Radiative corrections to e + e W + W in the Weinberg model, Nucl. Phys. B 164 (1980) 445 [INSPIRE].

    Article  ADS  Google Scholar 

  72. M. Böhm et al., Electroweak radiative corrections to e + e W + W , Nucl. Phys. B 304 (1988) 463 [INSPIRE].

    Article  ADS  Google Scholar 

  73. J. Fleischer, F. Jegerlehner and M. Zralek, Radiative corrections to helicity amplitudes for the process e + e W + W , BI-TP-88-03 (1988).

  74. W. Beenakker, A. Denner, S. Dittmaier, R. Mertig and T. Sack, High-energy approximation for on-shell W pair production, Nucl. Phys. B 410 (1993) 245 [INSPIRE].

    Article  ADS  Google Scholar 

  75. W. Beenakker, F.A. Berends and A. Chapovsky, Radiative corrections to pair production of unstable particles: results for e + e four fermions, Nucl. Phys. B 548 (1999) 3 [hep-ph/9811481] [INSPIRE].

    Article  ADS  Google Scholar 

  76. S. Jadach, W. Placzek, M. Skrzypek, B. Ward and Z. Was, The Monte Carlo program KoralW version 1.51 and the concurrent Monte Carlo KoralW and YFSWW3 with all background graphs and first order corrections to W pair production, Comput. Phys. Commun. 140 (2001) 475 [hep-ph/0104049] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  77. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Electroweak radiative corrections to e+e− → W W → 4 fermions in double pole approximation: the RACOONWW approach, Nucl. Phys. B 587 (2000) 67 [hep-ph/0006307] [INSPIRE].

    Article  ADS  Google Scholar 

  78. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, RACOONWW1.3: a Monte Carlo program for four fermion production at e + e colliders, Comput. Phys. Commun. 153 (2003) 462 [hep-ph/0209330] [INSPIRE].

    Article  ADS  Google Scholar 

  79. A. Denner, S. Dittmaier, M. Roth and L. Wieders, Complete electroweak O(α) corrections to charged-current e + e → 4 fermion processes, Phys. Lett. B 612 (2005) 223 [Erratum ibid. B 704 (2011) 667-668] [hep-ph/0502063] [INSPIRE].

    Article  ADS  Google Scholar 

  80. A. Denner, S. Dittmaier, M. Roth and L. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504-507] [hep-ph/0505042] [INSPIRE].

    Article  ADS  Google Scholar 

  81. A. Martin, R. Roberts, W. Stirling and R. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].

    Article  ADS  Google Scholar 

  82. A. Denner, S. Dittmaier and R. Schuster, Radiative corrections to γγ → W + W in the electroweak standard model, Nucl. Phys. B 452 (1995) 80 [hep-ph/9503442] [INSPIRE].

    Article  ADS  Google Scholar 

  83. J. Archibald et al., Simulation of photon-photon interactions in hadron collisions with SHERPA, Nucl. Phys. Proc. Suppl. 179-180 (2008) 218 [INSPIRE].

    Article  Google Scholar 

  84. T. Pierzchala and K. Piotrzkowski, Sensitivity to anomalous quartic gauge couplings in photon-photon interactions at the LHC, Nucl. Phys. Proc. Suppl. 179-180 (2008) 257 [arXiv:0807.1121] [INSPIRE].

    Article  Google Scholar 

  85. E. Accomando and A. Kaiser, Electroweak corrections and anomalous triple gauge-boson couplings in W + W and W ± Z production at the LHC, Phys. Rev. D 73 (2006) 093006 [hep-ph/0511088] [INSPIRE].

    ADS  Google Scholar 

  86. M. Roth and S. Weinzierl, QED corrections to the evolution of parton distributions, Phys. Lett. B 590 (2004) 190 [hep-ph/0403200] [INSPIRE].

    Article  ADS  Google Scholar 

  87. J. Küblbeck, M. Böhm and A. Denner, FeynArts: computer algebraic generation of Feynman graphs and amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].

    Article  ADS  Google Scholar 

  88. H. Eck and J. Küblbeck, Guide to FeynArts 1.0, University of Würzburg, Germany (1992).

    Google Scholar 

  89. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  90. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    Article  ADS  Google Scholar 

  91. T. Hahn and C. Schappacher, The implementation of the minimal supersymmetric standard model in FeynArts and FormCalc, Comput. Phys. Commun. 143 (2002) 54 [hep-ph/0105349] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  92. P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  93. J.A.M. Vermaseren, New features of FORM, (2000).

  94. G. Passarino and M. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    Article  ADS  Google Scholar 

  95. G. van Oldenborgh and J. Vermaseren, New algorithms for one loop integrals, Z. Phys. C 46 (1990) 425 [INSPIRE].

    Google Scholar 

  96. A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].

    ADS  Google Scholar 

  97. S. Dittmaier and M. Kramer, Electroweak radiative corrections to W boson production at hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [INSPIRE].

    ADS  Google Scholar 

  98. R. Mertig, M. Böhm and A. Denner, FeynCalc: computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

    Article  ADS  Google Scholar 

  99. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].

    Article  ADS  Google Scholar 

  100. G.P. Lepage, A new algorithm for adaptive multidimensional integration, J. Comput. Phys. 27 (1978) 192 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  101. G.P. Lepage, Vegas: an adaptive multidimensional integration program, CLNS-80/447 (1980) [INSPIRE].

  102. B. Harris and J. Owens, The Two cutoff phase space slicing method, Phys. Rev. D 65 (2002) 094032 [hep-ph/0102128] [INSPIRE].

    ADS  Google Scholar 

  103. S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].

    Article  ADS  Google Scholar 

  104. F. Bloch and A. Nordsieck, Note on the radiation field of the electron, Phys. Rev. 52 (1937) 54 [INSPIRE].

    Article  ADS  Google Scholar 

  105. K.P.O. Diener, S. Dittmaier and W. Hollik, Electroweak radiative corrections to deep inelastic neutrino scattering: implications for NuTeV?, Phys. Rev. D 69 (2004) 073005 [hep-ph/0310364] [INSPIRE].

    ADS  Google Scholar 

  106. M. Rubin, G.P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010) 084 [arXiv:1006.2144] [INSPIRE].

    Article  ADS  Google Scholar 

  107. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  108. M. Whalley, D. Bourilkov and R. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].

  109. S. Dittmaier and M. Huber, Radiative corrections to the neutral-current Drell-Yan process in the Standard Model and its minimal supersymmetric extension, JHEP 01 (2010) 060 [arXiv:0911.2329] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Kasprzik.

Additional information

ArXiv ePrint: 1208.3147

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bierweiler, A., Kasprzik, T., Kühn, J.H. et al. Electroweak corrections to W-boson pair production at the LHC. J. High Energ. Phys. 2012, 93 (2012). https://doi.org/10.1007/JHEP11(2012)093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)093

Keywords

Navigation