Skip to main content
Log in

Next-to-leading order electroweak corrections to pp → W+W → 4 leptons at the LHC in double-pole approximation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present the calculation of next-to-leading-order electroweak corrections to W-boson pair production at the LHC, taking off-shell effects of the W bosons and their leptonic decays into account in the framework of the so-called double-pole approximation. In detail, the lowest-order cross section and the photonic bremsstrahlung are based on full matrix elements with four-fermion final states, but the virtual one-loop corrections are approximated by the leading contributions of a systematic expansion about the resonance poles of the two W bosons. This expansion classifies the virtual corrections into factorizable and non-factorizable corrections, the calculation of which is described in detail. Corrections induced by photons in the initial state, i.e. photon-photon and quark-photon collision channels, are included and based on complete matrix elements as well. Our numerical results, which are presented for realistic acceptance cuts applied to the W-boson decay products, qualitatively confirm recent results obtained for on-shell W bosons and reveal electroweak corrections of the size of tens of percent in the TeV range of transverse momenta and invariant masses. In general, photon-photon and quark-photon induced contributions amount to 5−10% of the full differential result. Compared to previous predictions based on stable W bosons electroweak corrections, however, can change by several percent because of realistic cuts on the W-boson decay products and corrections to the decays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Measurement of W + W production in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector and limits on anomalous WWZ and WWγ couplings, Phys. Rev. D 87 (2013) 112001 [arXiv:1210.2979] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Measurement of W + W and ZZ production cross sections in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 721 (2013) 190 [arXiv:1301.4698] [INSPIRE].

    ADS  Google Scholar 

  3. CMS collaboration, Measurement of the W + W cross section in pp collisions at \( \sqrt{s}=7 \) TeV and limits on anomalous WWγ and WWZ couplings, Eur. Phys. J. C 73 (2013) 2610 [arXiv:1306.1126] [INSPIRE].

    ADS  Google Scholar 

  4. J. Ohnemus and J. Owens, An order α s calculation of hadronic ZZ production, Phys. Rev. D 43 (1991) 3626 [INSPIRE].

    ADS  Google Scholar 

  5. J. Ohnemus, An order α s calculation of hadronic W ± Z production, Phys. Rev. D 44 (1991) 3477 [INSPIRE].

    ADS  Google Scholar 

  6. J. Ohnemus, An order α s calculation of hadronic W W + production, Phys. Rev. D 44 (1991) 1403 [INSPIRE].

    ADS  Google Scholar 

  7. B. Mele, P. Nason and G. Ridolfi, QCD radiative corrections to Z boson pair production in hadronic collisions, Nucl. Phys. B 357 (1991) 409 [INSPIRE].

    Article  ADS  Google Scholar 

  8. S. Frixione, P. Nason and G. Ridolfi, Strong corrections to WZ production at hadron colliders, Nucl. Phys. B 383 (1992) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  9. S. Frixione, A next-to-leading order calculation of the cross-section for the production of W + W pairs in hadronic collisions, Nucl. Phys. B 410 (1993) 280 [INSPIRE].

    Article  ADS  Google Scholar 

  10. U. Baur, T. Han and J. Ohnemus, QCD corrections and nonstandard three vector boson couplings in W + W production at hadron colliders, Phys. Rev. D 53 (1996) 1098 [hep-ph/9507336] [INSPIRE].

    ADS  Google Scholar 

  11. L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s ) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].

    ADS  Google Scholar 

  13. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

    Article  ADS  Google Scholar 

  14. P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [INSPIRE].

    Article  ADS  Google Scholar 

  15. K. Hamilton, A positive-weight next-to-leading order simulation of weak boson pair production, JHEP 01 (2011) 009 [arXiv:1009.5391] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S. Höche, F. Krauss, M. Schönherr and F. Siegert, Automating the POWHEG method in Sherpa, JHEP 04 (2011) 024 [arXiv:1008.5399] [INSPIRE].

    Article  Google Scholar 

  17. T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W + W , WZ and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].

    Article  ADS  Google Scholar 

  18. R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].

    Article  ADS  Google Scholar 

  19. G. Chachamis, M. Czakon and D. Eiras, W pair production at the LHC. I. Two-loop corrections in the high energy limit, JHEP 12 (2008) 003 [arXiv:0802.4028] [INSPIRE].

    Article  ADS  Google Scholar 

  20. G. Chachamis, M. Czakon and D. Eiras, W pair production at the LHC. II. One-loop squared corrections in the high energy limit, arXiv:0806.3043 [INSPIRE].

  21. F. Campanario, M. Rauch and S. Sapeta, WW production at high transverse momenta beyond NLO, arXiv:1309.7293 [INSPIRE].

  22. M. Grazzini, Soft-gluon effects in WW production at hadron colliders, JHEP 01 (2006) 095 [hep-ph/0510337] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S. Dawson, I.M. Lewis and M. Zeng, Threshold resummed and approximate NNLO results for W + W pair production at the LHC, Phys. Rev. D 88 (2013) 054028 [arXiv:1307.3249] [INSPIRE].

    ADS  Google Scholar 

  24. Y. Wang, C.S. Li, Z.L. Liu, D.Y. Shao and H.T. Li, Transverse-momentum resummation for gauge boson pair production at the hadron collider, arXiv:1307.7520 [INSPIRE].

  25. D.A. Dicus, C. Kao and W. Repko, Gluon production of gauge bosons, Phys. Rev. D 36 (1987) 1570 [INSPIRE].

    ADS  Google Scholar 

  26. E.N. Glover and J. van der Bij, Z boson pair production via gluon fusion, Nucl. Phys. B 321 (1989) 561 [INSPIRE].

    Article  ADS  Google Scholar 

  27. T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced WW background to Higgs boson searches at the LHC, JHEP 03 (2005) 065 [hep-ph/0503094] [INSPIRE].

    Article  ADS  Google Scholar 

  28. T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W -boson pair production at the LHC, JHEP 12 (2006) 046 [hep-ph/0611170] [INSPIRE].

    Article  ADS  Google Scholar 

  29. T. Binoth, N. Kauer and P. Mertsch, Gluon-induced QCD corrections to ppZZ\( \ell \overline{\ell}\ell \prime \overline{\ell}\prime \), arXiv:0807.0024 [INSPIRE].

  30. F. Cascioli et al., Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton + 0, 1 jet production, arXiv:1309.0500 [INSPIRE].

  31. V.S. Fadin, L. Lipatov, A.D. Martin and M. Melles, Resummation of double logarithms in electroweak high-energy processes, Phys. Rev. D 61 (2000) 094002 [hep-ph/9910338] [INSPIRE].

    ADS  Google Scholar 

  32. M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett. 84 (2000) 4810 [hep-ph/0001142] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Hori, H. Kawamura and J. Kodaira, Electroweak Sudakov at two loop level, Phys. Lett. B 491 (2000) 275 [hep-ph/0007329] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Melles, Resummation of angular dependent corrections in spontaneously broken gauge theories, Eur. Phys. J. C 24 (2002) 193 [hep-ph/0108221] [INSPIRE].

    Article  ADS  Google Scholar 

  35. W. Beenakker and A. Werthenbach, Electroweak two loop Sudakov logarithms for on-shell fermions and bosons, Nucl. Phys. B 630 (2002) 3 [hep-ph/0112030] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. A. Denner, M. Melles and S. Pozzorini, Two loop electroweak angular dependent logarithms at high-energies, Nucl. Phys. B 662 (2003) 299 [hep-ph/0301241] [INSPIRE].

    Article  ADS  Google Scholar 

  37. B. Jantzen, J.H. Kühn, A.A. Penin and V.A. Smirnov, Two-loop electroweak logarithms, Phys. Rev. D 72 (2005) 051301 [Erratum ibid. D 74 (2006) 019901] [hep-ph/0504111] [INSPIRE].

  38. B. Jantzen, J.H. Kühn, A.A. Penin and V.A. Smirnov, Two-loop electroweak logarithms in four-fermion processes at high energy, Nucl. Phys. B 731 (2005) 188 [Erratum ibid. B 752 (2006) 327] [hep-ph/0509157] [INSPIRE].

  39. A. Denner, B. Jantzen and S. Pozzorini, Two-loop electroweak next-to-leading logarithmic corrections to massless fermionic processes, Nucl. Phys. B 761 (2007) 1 [hep-ph/0608326] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  40. J.H. Kühn, A. Penin and V.A. Smirnov, Summing up subleading Sudakov logarithms, Eur. Phys. J. C 17 (2000) 97 [hep-ph/9912503] [INSPIRE].

    Article  ADS  Google Scholar 

  41. E. Accomando, A. Denner and A. Kaiser, Logarithmic electroweak corrections to gauge-boson pair production at the LHC, Nucl. Phys. B 706 (2005) 325 [hep-ph/0409247] [INSPIRE].

    Article  ADS  Google Scholar 

  42. E. Accomando and A. Kaiser, Electroweak corrections and anomalous triple gauge-boson couplings in W + W and W ± Z production at the LHC, Phys. Rev. D 73 (2006) 093006 [hep-ph/0511088] [INSPIRE].

    ADS  Google Scholar 

  43. J. Kühn, F. Metzler, A. Penin and S. Uccirati, Next-to-next-to-leading electroweak logarithms for W -pair production at LHC, JHEP 06 (2011) 143 [arXiv:1101.2563] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. A. Bierweiler, T. Kasprzik, J. Kühn and S. Uccirati, Electroweak corrections to W -boson pair production at the LHC, JHEP 11 (2012) 093 [arXiv:1208.3147] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Bierweiler, T. Kasprzik and J.H. Kühn, Vector-boson pair production at the LHC to O(α 3 ) accuracy, arXiv:1305.5402 [INSPIRE].

  46. J. Baglio, L.D. Ninh and M.M. Weber, Massive gauge boson pair production at the LHC: a next-to-leading order story, arXiv:1307.4331 [INSPIRE].

  47. M. Luszczak and A. Szczurek, Subleading processes in production of W + W pairs in proton-proton collisions, arXiv:1309.7201 [INSPIRE].

  48. A. Denner, S. Dittmaier, M. Roth and L. Wieders, Complete electroweak O(α) corrections to charged-current e + e → 4 fermion processes, Phys. Lett. B 612 (2005) 223 [Erratum ibid. B 704 (2011) 667] [hep-ph/0502063] [INSPIRE].

  49. A. Denner, S. Dittmaier, M. Roth and L. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].

  50. R.G. Stuart, Gauge invariance, analyticity and physical observables at the Z 0 resonance, Phys. Lett. B 262 (1991) 113 [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Aeppli, F. Cuypers and G.J. van Oldenborgh, O(Γ) corrections to W pair production in e + e and γγ collisions, Phys. Lett. B 314 (1993) 413 [hep-ph/9303236] [INSPIRE].

    Article  ADS  Google Scholar 

  52. A. Aeppli, G.J. van Oldenborgh and D. Wyler, Unstable particles in one loop calculations, Nucl. Phys. B 428 (1994) 126 [hep-ph/9312212] [INSPIRE].

    Article  ADS  Google Scholar 

  53. W. Beenakker, F.A. Berends and A. Chapovsky, Radiative corrections to pair production of unstable particles: results for e + e → 4 fermions, Nucl. Phys. B 548 (1999) 3 [hep-ph/9811481] [INSPIRE].

    Article  ADS  Google Scholar 

  54. S. Jadach, W. Placzek, M. Skrzypek, B. Ward and Z. Was, Final state radiative effects for the exact O(α) YFS exponentiated (un)stable W + W production at and beyond LEP-2 energies, Phys. Rev. D 61 (2000) 113010 [hep-ph/9907436] [INSPIRE].

    ADS  Google Scholar 

  55. S. Jadach, W. Placzek, M. Skrzypek, B. Ward and Z. Was, The Monte Carlo event generator YFSWW3 version 1.16 for W pair production and decay at LEP-2/LC energies, Comput. Phys. Commun. 140 (2001) 432 [hep-ph/0103163] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  56. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, O(α) corrections to e + e WW → 4 fermions (+ γ): first numerical results from RACOONWW, Phys. Lett. B 475 (2000) 127 [hep-ph/9912261] [INSPIRE].

    Article  ADS  Google Scholar 

  57. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Electroweak radiative corrections to e + e WW → 4 fermions in double pole approximation: the RACOONWW approach, Nucl. Phys. B 587 (2000) 67 [hep-ph/0006307] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → 4 fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].

    Article  ADS  Google Scholar 

  59. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, RACOONWW 1.3: a Monte Carlo program for four fermion production at e + e colliders, Comput. Phys. Commun. 153 (2003) 462 [hep-ph/0209330] [INSPIRE].

    Article  ADS  Google Scholar 

  60. M.W. Grünewald et al., Reports of the working groups on precision calculations for LEP-2 physics: proceedings. Four fermion production in electron positron collisions, in Reports of the Working Groups on Precision Calculations for LEP-2 Physics, S. Jadach, G. Passarino and R. Pittau eds., CERN-2000-009, Geneva Switzerland (2000), pg. 1 [hep-ph/0005309] [INSPIRE].

  61. A. Bredenstein, S. Dittmaier and M. Roth, Four-fermion production at γγ colliders. 1. Lowest-order predictions and anomalous couplings, Eur. Phys. J. C 36 (2004) 341 [hep-ph/0405169] [INSPIRE].

    Article  ADS  Google Scholar 

  62. A. Bredenstein, S. Dittmaier and M. Roth, Four-fermion production at γγ colliders. 2. Radiative corrections in double-pole approximation, Eur. Phys. J. C 44 (2005) 27 [hep-ph/0506005] [INSPIRE].

    Article  ADS  Google Scholar 

  63. S. Dittmaier, Weyl-van der Waerden formalism for helicity amplitudes of massive particles, Phys. Rev. D 59 (1998) 016007 [hep-ph/9805445] [INSPIRE].

    ADS  Google Scholar 

  64. S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].

    Article  ADS  Google Scholar 

  65. K.-P. Diener, S. Dittmaier and W. Hollik, Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering, Phys. Rev. D 72 (2005) 093002 [hep-ph/0509084] [INSPIRE].

    ADS  Google Scholar 

  66. S. Dittmaier, A. Kabelschacht and T. Kasprzik, Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables, Nucl. Phys. B 800 (2008) 146 [arXiv:0802.1405] [INSPIRE].

    Article  ADS  Google Scholar 

  67. A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].

    ADS  Google Scholar 

  68. J. Küblbeck, M. Böhm and A. Denner, Feyn Arts: computer algebraic generation of Feynman graphs and amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  69. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  70. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    Article  ADS  Google Scholar 

  71. T. Hahn, Automatic loop calculations with FeynArts, FormCalc and LoopTools, Nucl. Phys. Proc. Suppl. 89 (2000) 231 [hep-ph/0005029] [INSPIRE].

    Article  ADS  Google Scholar 

  72. G. Passarino and M. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    Article  ADS  Google Scholar 

  73. A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  74. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  75. G. ’t Hooft and M. Veltman, Scalar one loop integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  76. W. Beenakker and A. Denner, Infrared divergent scalar box integrals with applications in the electroweak Standard Model, Nucl. Phys. B 338 (1990) 349 [INSPIRE].

    Article  ADS  Google Scholar 

  77. S. Dittmaier, Separation of soft and collinear singularities from one loop N point integrals, Nucl. Phys. B 675 (2003) 447 [hep-ph/0308246] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 199 [arXiv:1005.2076] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. V.S. Fadin, V.A. Khoze and A.D. Martin, Interference radiative phenomena in the production of heavy unstable particles, Phys. Rev. D 49 (1994) 2247 [INSPIRE].

    ADS  Google Scholar 

  80. K. Melnikov and O.I. Yakovlev, Final state interaction in the production of heavy unstable particles, Nucl. Phys. B 471 (1996) 90 [hep-ph/9501358] [INSPIRE].

    Article  ADS  Google Scholar 

  81. W. Beenakker, A. Chapovsky and F.A. Berends, Nonfactorizable corrections to W pair production: methods and analytic results, Nucl. Phys. B 508 (1997) 17 [hep-ph/9707326] [INSPIRE].

    Article  ADS  Google Scholar 

  82. A. Denner, S. Dittmaier and M. Roth, Nonfactorizable photonic corrections to e + e WW → 4 fermions, Nucl. Phys. B 519 (1998) 39 [hep-ph/9710521] [INSPIRE].

    Article  ADS  Google Scholar 

  83. A. Denner, S. Dittmaier and M. Roth, Further numerical results on nonfactorizable corrections to e + e → 4 fermions, Phys. Lett. B 429 (1998) 145 [hep-ph/9803306] [INSPIRE].

    Article  ADS  Google Scholar 

  84. S. Dittmaier and M. Huber, Radiative corrections to the neutral-current Drell-Yan process in the Standard Model and its minimal supersymmetric extension, JHEP 01 (2010) 060 [arXiv:0911.2329] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  85. H. Spiesberger, QED radiative corrections for parton distributions, Phys. Rev. D 52 (1995) 4936 [hep-ph/9412286] [INSPIRE].

    ADS  Google Scholar 

  86. S. Dittmaier and M. Krämer, Electroweak radiative corrections to W boson production at hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [INSPIRE].

    ADS  Google Scholar 

  87. S. Dittmaier, M. Böhm and A. Denner, Improved Born approximation for e + e W + W in the LEP-200 energy region, Nucl. Phys. B 376 (1992) 29 [Erratum ibid. B 391 (1993) 483] [INSPIRE].

  88. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Off-shell W pair production: universal versus nonuniversal corrections, hep-ph/0101257 [INSPIRE].

  89. V.S. Fadin, V.A. Khoze and A.D. Martin, On W + W production near threshold, Phys. Lett. B 311 (1993) 311 [INSPIRE].

    Article  ADS  Google Scholar 

  90. D.Y. Bardin, W. Beenakker and A. Denner, The Coulomb singularity in off-shell W pair production, Phys. Lett. B 317 (1993) 213 [INSPIRE].

    Article  ADS  Google Scholar 

  91. V.S. Fadin, V.A. Khoze, A.D. Martin and A. Chapovsky, Coulomb effects in W + W production, Phys. Rev. D 52 (1995) 1377 [hep-ph/9501214] [INSPIRE].

    ADS  Google Scholar 

  92. A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak corrections to W + jet hadroproduction including leptonic W -boson decays, JHEP 08 (2009) 075 [arXiv:0906.1656] [INSPIRE].

    Article  ADS  Google Scholar 

  93. T. Stelzer and W. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [INSPIRE].

    Article  ADS  Google Scholar 

  94. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].

    Article  ADS  Google Scholar 

  95. A. Bredenstein, S. Dittmaier and M. Roth, Four-fermion production at γγ colliders. 2. Radiative corrections in double-pole approximation, Eur. Phys. J. C 44 (2005) 27 [hep-ph/0506005] [INSPIRE].

    Article  ADS  Google Scholar 

  96. W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, Eur. Phys. J. C 71 (2011) 1742 [arXiv:0708.4233] [INSPIRE].

    Article  ADS  Google Scholar 

  97. M. Moretti, T. Ohl and J. Reuter, OMega: an optimizing matrix element generator, hep-ph/0102195 [INSPIRE].

  98. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    Google Scholar 

  99. D.Y. Bardin, A. Leike, T. Riemann and M. Sachwitz, Energy dependent width effects in e + e annihilation near the Z boson pole, Phys. Lett. B 206 (1988) 539 [INSPIRE].

    Article  ADS  Google Scholar 

  100. A. Martin, R. Roberts, W. Stirling and R. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].

    Article  ADS  Google Scholar 

  101. NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].

    MATH  Google Scholar 

  102. ATLAS collaboration, Measurement of the transverse momentum distribution of Z/γ bosons in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 705 (2011) 415 [arXiv:1107.2381] [INSPIRE].

    ADS  Google Scholar 

  103. M. Rubin, G.P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010) 084 [arXiv:1006.2144] [INSPIRE].

    Article  ADS  Google Scholar 

  104. A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak corrections to dilepton + jet production at hadron colliders, JHEP 06 (2011) 069 [arXiv:1103.0914] [INSPIRE].

    Article  ADS  Google Scholar 

  105. A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak corrections to monojet production at the LHC, Eur. Phys. J. C 73 (2013) 2297 [arXiv:1211.5078] [INSPIRE].

    Article  ADS  Google Scholar 

  106. LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].

  107. S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jäger.

Additional information

ArXiv ePrint: 1310.1564

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billoni, M., Dittmaier, S., Jäger, B. et al. Next-to-leading order electroweak corrections to pp → W+W → 4 leptons at the LHC in double-pole approximation. J. High Energ. Phys. 2013, 43 (2013). https://doi.org/10.1007/JHEP12(2013)043

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)043

Keywords

Navigation