Skip to main content
Log in

Inadequacy of zero-width approximation for a light Higgs boson signal

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In the Higgs search at the LHC, a light Higgs boson \( \left( {{115}\,{\text{GeV}} \lesssim {M_{\text{H}}} \lesssim {13}0\,{\text{GeV}}} \right) \) is not excluded by experimental data. In this mass range, the width of the Standard Model Higgs boson is more than four orders of magnitude smaller than its mass. The zero-width approximation is hence expected to be an excellent approximation. We show that this is not always the case. The inclusion of off-shell contributions is essential to obtain an accurate Higgs signal normalisation at the 1% precision level. For gg (→ H) → VV, V = W,Z, \( \mathcal{O} \)(10 %) corrections occur due to an enhanced Higgs signal in the region M V V > 2 M V , where also sizable Higgs-continuum interference occurs. We discuss how experimental selection cuts can be used to exclude this region in search channels where the Higgs invariant mass cannot be reconstructed. We note that the HV V decay modes in weak boson fusion are similarly affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].

    Article  ADS  Google Scholar 

  2. P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. P.W. Higgs, Spontaneous symmetry breakdown without massless bosons, Phys. Rev. 145 (1966) 1156 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. G. Guralnik, C. Hagen and T. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    Article  ADS  Google Scholar 

  6. LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3 and OPAL collaborations, R. Barate et al., Search for the Standard Model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

    ADS  Google Scholar 

  7. Tevatron New Physics Higgs Working Group, CDF and DØ collaborations, Updated combination of CDF and DØ searches for Standard Model Higgs boson production with up to 10.0 fb −1 of data, arXiv:1207.0449 [INSPIRE].

  8. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the Standard Model Higgs boson in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    Article  ADS  Google Scholar 

  9. ATLAS collaboration, G. Aad et al., Combined search for the Standard Model Higgs boson in pp collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, Phys. Rev. D 86 (2012) 032003 [arXiv:1207.0319] [INSPIRE].

    ADS  Google Scholar 

  10. H. Georgi, S. Glashow, M. Machacek and D.V. Nanopoulos, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].

    Article  ADS  Google Scholar 

  11. S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].

    Article  ADS  Google Scholar 

  13. D. Graudenz, M. Spira and P. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    Article  ADS  Google Scholar 

  15. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

    Article  ADS  Google Scholar 

  16. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

    Article  ADS  Google Scholar 

  17. V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].

    Article  ADS  Google Scholar 

  19. D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC, JHEP 11 (2011) 064 [arXiv:1109.2109] [INSPIRE].

    Article  Google Scholar 

  20. S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [INSPIRE].

    Article  ADS  Google Scholar 

  21. E. Laenen and L. Magnea, Threshold resummation for electroweak annihilation from DIS data, Phys. Lett. B 632 (2006) 270 [hep-ph/0508284] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Idilbi, X.-D. Ji, J.-P. Ma and F. Yuan, Threshold resummation for Higgs production in effective field theory, Phys. Rev. D 73 (2006) 077501 [hep-ph/0509294] [INSPIRE].

    ADS  Google Scholar 

  23. V. Ravindran, On Sudakov and soft resummations in QCD, Nucl. Phys. B 746 (2006) 58 [hep-ph/0512249] [INSPIRE].

    Article  ADS  Google Scholar 

  24. V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys. B 752 (2006) 173 [hep-ph/0603041] [INSPIRE].

    Article  ADS  Google Scholar 

  25. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-group improved prediction for Higgs production at hadron colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [INSPIRE].

    Article  ADS  Google Scholar 

  26. C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].

    Article  ADS  Google Scholar 

  28. S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127 [arXiv:0801.2544] [INSPIRE].

    Article  ADS  Google Scholar 

  29. R.V. Harlander and K.J. Ozeren, Top mass effects in Higgs production at next-to-next-to-leading order QCD: virtual corrections, Phys. Lett. B 679 (2009) 467 [arXiv:0907.2997] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Pak, M. Rogal and M. Steinhauser, Virtual three-loop corrections to Higgs boson production in gluon fusion for finite top quark mass, Phys. Lett. B 679 (2009) 473 [arXiv:0907.2998] [INSPIRE].

    Article  ADS  Google Scholar 

  31. R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].

    Article  ADS  Google Scholar 

  33. R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [arXiv:0912.2104] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J. Baglio and A. Djouadi, Higgs production at the LHC, JHEP 03 (2011) 055 [arXiv:1012.0530] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Djouadi and P. Gambino, Leading electroweak correction to Higgs boson production at proton colliders, Phys. Rev. Lett. 73 (1994) 2528 [hep-ph/9406432] [INSPIRE].

    Article  ADS  Google Scholar 

  36. U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two loop light fermion contribution to Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [INSPIRE].

    Article  ADS  Google Scholar 

  37. G. Degrassi and F. Maltoni, Two-loop electroweak corrections to Higgs production at hadron colliders, Phys. Lett. B 600 (2004) 255 [hep-ph/0407249] [INSPIRE].

    Article  ADS  Google Scholar 

  38. S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO electroweak corrections to Higgs boson production at hadron colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [INSPIRE].

    Article  ADS  Google Scholar 

  39. S. Actis, G. Passarino, C. Sturm and S. Uccirati, NNLO computational techniques: the cases Hγγ and Hgg, Nucl. Phys. B 811 (2009) 182 [arXiv:0809.3667] [INSPIRE].

    Article  ADS  Google Scholar 

  40. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Updated predictions for Higgs production at the Tevatron and the LHC, Phys. Lett. B 698 (2011) 271 [arXiv:1008.3162] [INSPIRE].

    Article  ADS  Google Scholar 

  41. W.-Y. Keung and F.J. Petriello, Electroweak and finite quark-mass effects on the Higgs boson transverse momentum distribution, Phys. Rev. D 80 (2009) 013007 [arXiv:0905.2775] [INSPIRE].

    ADS  Google Scholar 

  42. O. Brein, Electroweak and bottom quark contributions to Higgs boson plus jet production, Phys. Rev. D 81 (2010) 093006 [arXiv:1003.4438] [INSPIRE].

    ADS  Google Scholar 

  43. C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003 [arXiv:0811.3458] [INSPIRE].

    Article  ADS  Google Scholar 

  44. D. de Florian and M. Grazzini, Higgs production through gluon fusion: updated cross sections at the Tevatron and the LHC, Phys. Lett. B 674 (2009) 291 [arXiv:0901.2427] [INSPIRE].

    Article  ADS  Google Scholar 

  45. LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].

  46. C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Total cross-section for Higgs boson hadroproduction with anomalous Standard Model interactions, JHEP 12 (2011) 058 [arXiv:1107.0683] [INSPIRE].

    Article  ADS  Google Scholar 

  47. C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Inclusive Higgs boson cross-section for the LHC at 8 TeV, JHEP 04 (2012) 004 [arXiv:1202.3638] [INSPIRE].

    Article  ADS  Google Scholar 

  48. D. de Florian and M. Grazzini, Higgs production at the LHC: updated cross sections at \( \sqrt {s} = 8 \) TeV, arXiv:1206.4133 [INSPIRE].

  49. C. Anastasiou, G. Dissertori and F. Stockli, NNLO QCD predictions for the HWWℓνℓν signal at the LHC, JHEP 09 (2007) 018 [arXiv:0707.2373] [INSPIRE].

    Article  ADS  Google Scholar 

  50. M. Grazzini, NNLO predictions for the Higgs boson signal in the HW Wℓνℓν and HZZ →4ℓ decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].

    Article  ADS  Google Scholar 

  51. S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].

  52. A. Bredenstein, A. Denner, S. Dittmaier and M. Weber, Precise predictions for the Higgs-boson decay HW W/ZZ → 4 leptons, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [INSPIRE].

    ADS  Google Scholar 

  53. A. Denner et al., Higgs production and decay with a fourth Standard-Model-like fermion generation, Eur. Phys. J. C 72 (2012) 1992 [arXiv:1111.6395] [INSPIRE].

    Article  ADS  Google Scholar 

  54. S. Goria, G. Passarino and D. Rosco, The Higgs boson lineshape, Nucl. Phys. B 864 (2012) 530 [arXiv:1112.5517] [INSPIRE].

    Article  ADS  Google Scholar 

  55. S. Buehler, Precise inclusive Higgs predictions using iHixs, arXiv:1201.0985 [INSPIRE].

  56. D. Berdine, N. Kauer and D. Rainwater, Breakdown of the narrow width approximation for new physics, Phys. Rev. Lett. 99 (2007) 111601 [hep-ph/0703058] [INSPIRE].

    Article  ADS  Google Scholar 

  57. N. Kauer, Narrow-width approximation limitations, Phys. Lett. B 649 (2007) 413 [hep-ph/0703077] [INSPIRE].

    Article  ADS  Google Scholar 

  58. N. Kauer, A threshold-improved narrow-width approximation for BSM physics, JHEP 04 (2008) 055 [arXiv:0708.1161] [INSPIRE].

    Article  ADS  Google Scholar 

  59. C. Uhlemann and N. Kauer, Narrow-width approximation accuracy, Nucl. Phys. B 814 (2009) 195 [arXiv:0807.4112] [INSPIRE].

    Article  ADS  Google Scholar 

  60. E.N. Glover and J. van der Bij, Vector boson pair production via gluon fusion, Phys. Lett. B 219 (1989) 488 [INSPIRE].

    Article  ADS  Google Scholar 

  61. E.N. Glover and J. van der Bij, Z boson pair production via gluon fusion, Nucl. Phys. B 321 (1989) 561 [INSPIRE].

    Article  ADS  Google Scholar 

  62. T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W -boson pair production at the LHC, JHEP 12 (2006) 046 [hep-ph/0611170] [INSPIRE].

    Article  ADS  Google Scholar 

  63. E. Accomando, The process ggW W as a probe into the EWSB mechanism, Phys. Lett. B 661 (2008) 129 [arXiv:0709.1364] [INSPIRE].

    Article  ADS  Google Scholar 

  64. J.M. Campbell, R.K. Ellis and C. Williams, Gluon-gluon contributions to W + W production and Higgs interference effects, JHEP 10 (2011) 005 [arXiv:1107.5569] [INSPIRE].

    Article  ADS  Google Scholar 

  65. N. Kauer, Signal-background interference in ggHV V, arXiv:1201.1667 [INSPIRE].

  66. L.J. Dixon and M.S. Siu, Resonance continuum interference in the diphoton Higgs signal at the LHC, Phys. Rev. Lett. 90 (2003) 252001 [hep-ph/0302233] [INSPIRE].

    Article  ADS  Google Scholar 

  67. L.J. Dixon and Y. Sofianatos, Resonance-continuum interference in light Higgs boson production at a photon collider, Phys. Rev. D 79 (2009) 033002 [arXiv:0812.3712] [INSPIRE].

    ADS  Google Scholar 

  68. E. Accomando et al., Interference effects in heavy W -boson searches at the LHC, Phys. Rev. D 85 (2012) 115017 [arXiv:1110.0713] [INSPIRE].

    ADS  Google Scholar 

  69. J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].

    Article  ADS  Google Scholar 

  70. R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].

    Article  ADS  Google Scholar 

  71. T. Melia, K. Melnikov, R. Rontsch, M. Schulze and G. Zanderighi, Gluon fusion contribution to W + W + jet production, arXiv:1205.6987 [INSPIRE].

  72. P. Agrawal and A. Shivaji, Di-vector boson + jet production via gluon fusion at hadron colliders, arXiv:1207.2927 [INSPIRE].

  73. N. Kauer and D. Zeppenfeld, Finite width effects in top quark production at hadron colliders, Phys. Rev. D 65 (2002) 014021 [hep-ph/0107181] [INSPIRE].

    ADS  Google Scholar 

  74. G. Passarino, C. Sturm and S. Uccirati, Higgs pseudo-observables, second Riemann sheet and all that, Nucl. Phys. B 834 (2010) 77 [arXiv:1001.3360] [INSPIRE].

    Article  ADS  Google Scholar 

  75. S. Actis and G. Passarino, Two-loop renormalization in the Standard Model part III: renormalization equations and their solutions, Nucl. Phys. B 777 (2007) 100 [hep-ph/0612124] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  76. A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precision calculations for HWW/ZZ → 4 fermions with PROPHECY4f, arXiv:0708.4123 [INSPIRE].

  77. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  78. D. de Florian, private communication (2012).

  79. D. Rebuzzi, private communication (2012).

  80. VBF: Vector Boson Fusion process wiki webpage, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/VBF.

  81. HWW * process wiki webpage,https://twiki.cern.ch/twiki/bin/view/LHCPhysics/WW.

  82. HZZ * process wiki webpage, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ZZ.

  83. gg2VV: parton-level integrator and event generator for gg(→ H) → W W and gg(→ H) → ZZ processes webpage, http://gg2VV.hepforge.org/.

  84. T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W W background to Higgs boson searches at the LHC, JHEP 03 (2005) 065 [hep-ph/0503094] [INSPIRE].

    Article  ADS  Google Scholar 

  85. T. Binoth, N. Kauer and P. Mertsch, Gluon-induced QCD corrections to \( pp \to ZZ \to \ell \bar{\ell }\ell \prime \bar{\ell }\prime \), arXiv:0807.0024 [INSPIRE].

  86. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    Article  ADS  Google Scholar 

  87. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260].

    Article  ADS  MATH  Google Scholar 

  88. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the Standard Model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  89. ATLAS collaboration, G. Aad et al., Search for the Standard Model Higgs boson in the decay channel HZZ * → 4ℓ with 4.8 fb −1 of pp collision data at \( \sqrt {s} = 7 \) TeV with ATLAS, Phys. Lett. B 710 (2012) 383 [arXiv:1202.1415] [INSPIRE].

    Article  ADS  Google Scholar 

  90. CMS collaboration, S. Chatrchyan et al., Search for the Standard Model Higgs boson in the decay channel HZZ → 4 leptons in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Rev. Lett. 108 (2012) 111804 [arXiv:1202.1997] [INSPIRE].

    Article  ADS  Google Scholar 

  91. ATLAS collaboration, G. Aad et al., Search for the Standard Model Higgs boson in the HWW *ℓνℓν decay mode with 4.7fb −1 of ATLAS data at \( \sqrt {s} = 7 \) TeV, arXiv:1206.0756 [INSPIRE].

  92. CMS collaboration, S. Chatrchyan et al., Search for the Standard Model Higgs boson decaying to W + W in the fully leptonic final state in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 710 (2012) 91 [arXiv:1202.1489] [INSPIRE].

    Article  ADS  Google Scholar 

  93. A.J. Barr, B. Gripaios and C.G. Lester, Measuring the Higgs boson mass in dileptonic W -boson decays at hadron colliders, JHEP 07 (2009) 072 [arXiv:0902.4864] [INSPIRE].

    Article  ADS  Google Scholar 

  94. ATLAS collaboration, G. Aad et al., Search for a Standard Model Higgs boson in the HZZ + νν decay channel using 4.7fb −1 of \( \sqrt {s} = 7 \) TeV data with the ATLAS detector, arXiv:1205.6744 [INSPIRE].

  95. CMS collaboration, S. Chatrchyan et al., Search for the Standard Model Higgs boson in the HZZ →22ν channel in pp collisions at \( \sqrt {s} = 7 \) TeV, JHEP 03 (2012) 040 [arXiv:1202.3478] [INSPIRE].

    Article  ADS  Google Scholar 

  96. D. Rainwater and D. Zeppenfeld, Observing in weak boson fusion with dual forward jet tagging at the CERN LHC, Phys. Rev. D 60 (1999) 113004 [Erratum ibid. D 61 (2000) 099901] [hep-ph/9906218].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolas Kauer.

Additional information

ArXiv ePrint: 1206.4803

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauer, N., Passarino, G. Inadequacy of zero-width approximation for a light Higgs boson signal. J. High Energ. Phys. 2012, 116 (2012). https://doi.org/10.1007/JHEP08(2012)116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)116

Keywords

Navigation