Skip to main content
Log in

The health of SUSY after the Higgs discovery and the XENON100 data

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We analyze the implications for the status and prospects of supersymmetry of the Higgs discovery and the last XENON data. We focus mainly, but not only, on the CMSSM and NUHM models. Using a Bayesian approach we determine the distribution of probability in the parameter space of these scenarios. This shows that, most probably, they are now beyond the LHC reach. This negative chances increase further (at more than 95% c.l.) if one includes dark matter constraints in the analysis, in particular the last XENON100 data. However, the models would be probed completely by XENON1T. The mass of the LSP neutralino gets essentially fixed around 1 TeV. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises automatically from the careful Bayesian analysis itself, and allows to scan the whole parameter space. In this way, we can explain and resolve the apparent discrepancies between the previous results in the literature. Although SUSY has become hard to detect at LHC, this does not necessarily mean that is very fine-tuned. We use Bayesian techniques to show the experimental Higgs mass is at ~ 2 σ off the CMSSM or NUHM expectation. This is substantial but not dramatic. Although the CMSSM or the NUHM are unlikely to show up at the LHC, they are still interesting and plausible models after the Higgs observation; and, if they are true, the chances of discovering them in future dark matter experiments are quite high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. ATLAS collaboration, Updated ATLAS results on the signal strength of the Higgs-like boson for decays into WW and heavy fermion final states, ATLAS-CONF-2012-162 (2012).

  4. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045.

  5. M. Farina et al., Implications of XENON100 and LHC results for Dark Matter models, Nucl. Phys. B 853 (2011) 607 [arXiv:1104.3572] [INSPIRE].

    Article  ADS  Google Scholar 

  6. C. Balázs, A. Buckley, D. Carter, B. Farmer and M. White, Should we still believe in constrained supersymmetry?, arXiv:1205.1568 [INSPIRE].

  7. A. Fowlie et al., The CMSSM Favoring New Territories: The Impact of New LHC Limits and a 125 GeV Higgs, Phys. Rev. D 86 (2012) 075010 [arXiv:1206.0264] [INSPIRE].

    ADS  Google Scholar 

  8. S. Akula, P. Nath and G. Peim, Implications of the Higgs Boson Discovery for mSUGRA, Phys. Lett. B 717 (2012) 188 [arXiv:1207.1839] [INSPIRE].

    ADS  Google Scholar 

  9. O. Buchmueller et al., The CMSSM and NUHM1 in Light of 7 TeV LHC, B s μ + μ and XENON100 Data, Eur. Phys. J. C 72 (2012) 2243 [arXiv:1207.7315] [INSPIRE].

    ADS  Google Scholar 

  10. A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].

    Article  ADS  Google Scholar 

  11. C. Strege et al., Global Fits of the CMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints, JCAP 04 (2013) 013 [arXiv:1212.2636] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Cabrera, J. Casas and R. Ruiz de Austri, Bayesian approach and Naturalness in MSSM analyses for the LHC, JHEP 03 (2009) 075 [arXiv:0812.0536] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Strumia, Naturalness of supersymmetric models, hep-ph/9904247 [INSPIRE].

  14. J.R. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, Observables in Low-Energy Superstring Models, Mod. Phys. Lett. A 1 (1986) 57 [INSPIRE].

    ADS  Google Scholar 

  15. R. Barbieri and G. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].

    Article  ADS  Google Scholar 

  16. B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  17. B.M. Kastening, Renormalization group improvement of the effective potential in massive ϕ 4 theory, Phys. Lett. B 283 (1992) 287 [INSPIRE].

    ADS  Google Scholar 

  18. C. Ford, D. Jones, P. Stephenson and M. Einhorn, The Effective potential and the renormalization group, Nucl. Phys. B 395 (1993) 17 [hep-lat/9210033] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Bando, T. Kugo, N. Maekawa and H. Nakano, Improving the effective potential, Phys. Lett. B 301 (1993) 83 [hep-ph/9210228] [INSPIRE].

    ADS  Google Scholar 

  20. J. Casas, J. Espinosa, M. Quirós and A. Riotto, The Lightest Higgs boson mass in the minimal supersymmetric standard model, Nucl. Phys. B 436 (1995) 3 [Erratum ibid. B 439 (1995) 466] [hep-ph/9407389] [INSPIRE].

    Article  ADS  Google Scholar 

  21. L.E. Ibáñez and C. Lopez, N=1 Supergravity, the Weak Scale and the Low-Energy Particle Spectrum, Nucl. Phys. B 233 (1984) 511 [INSPIRE].

    Article  ADS  Google Scholar 

  22. L.J. Hall, R. Rattazzi and U. Sarid, The Top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].

    ADS  Google Scholar 

  23. A.E. Nelson and L. Randall, Naturally large tan BETA, Phys. Lett. B 316 (1993) 516 [hep-ph/9308277] [INSPIRE].

    ADS  Google Scholar 

  24. V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040] [INSPIRE].

    ADS  Google Scholar 

  25. G. Giudice and A. Masiero, A Natural Solution to the mu Problem in Supergravity Theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].

    ADS  Google Scholar 

  26. B.C. Allanach, K. Cranmer, C.G. Lester and A.M. Weber, Natural priors, CMSSM fits and LHC weather forecasts, JHEP 08 (2007) 023 [arXiv:0705.0487] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M.E. Cabrera, J.A. Casas and R. Ruiz d Austri, MSSM Forecast for the LHC, JHEP 05 (2010) 043 [arXiv:0911.4686] [INSPIRE].

    Article  ADS  Google Scholar 

  28. Tevatron Electroweak Working Group, CDF, D0 collaborations, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb-1 of data, arXiv:1107.5255 [INSPIRE].

  29. Particle Data Group collaboration, W. Yao et al., Review of Particle Physics, J. Phys. G 33 (2006) 1 [INSPIRE].

    ADS  Google Scholar 

  30. K. Hagiwara, A. Martin, D. Nomura and T. Teubner, Improved predictions for \( g \) − 2 of the muon and α QED (\( M_Z^2 \)), Phys. Lett. B 649 (2007) 173 [hep-ph/0611102] [INSPIRE].

    ADS  Google Scholar 

  31. R.R. de Austri, R. Trotta and L. Roszkowski, A Markov chain Monte Carlo analysis of the CMSSM, JHEP 05 (2006) 002 [hep-ph/0602028] [INSPIRE].

    Article  Google Scholar 

  32. http://lepewwg.web.cern.ch/LEPEWWG.

  33. Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-Hadron, C-Hadron and tau-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

  34. LHCb collaboration, Measurement of the \( B_s^0-\overline{B}_s^0 \) oscillation frequency Δm s in \( B_s^0\to D_s^{-} \) π decays, Phys. Lett. B 709 (2012) 177 [arXiv:1112.4311] [INSPIRE].

    ADS  Google Scholar 

  35. BaBar collaboration, B. Aubert et al., Measurement of Branching Fractions and CP and Isospin Asymmetries in BK γ, arXiv:0808.1915 [INSPIRE].

  36. BaBar collaboration, B. Aubert et al., Observation of the semileptonic decays BD*τ \( \overline{\nu} \) (τ) and evidence for B \( \overline{\nu} \) (τ), Phys. Rev. Lett. 100 (2008) 021801 [arXiv:0709.1698] [INSPIRE].

    Article  ADS  Google Scholar 

  37. FlaviaNet Working Group on Kaon Decays collaboration, M. Antonelli et al., Precision tests of the Standard Model with leptonic and semileptonic kaon decays, arXiv:0801.1817 [INSPIRE].

  38. LHCb collaboration, First Evidence for the Decay \( B_s^0\to {\mu^{+}}{\mu^{-}} \), Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].

    Article  Google Scholar 

  39. N. Jarosik et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors and Basic Results, Astrophys. J. Suppl. 192 (2011) 14 [arXiv:1001.4744] [INSPIRE].

    Article  ADS  Google Scholar 

  40. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults.

  41. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 5.8 fb −1 of \( \sqrt{s}=8 \) TeV proton-proton collision data, ATLAS-CONF-2012-109 (2012).

  42. CMS collaboration, Search for Neutral Higgs Bosons Decaying into Tau Leptons in the Dimuon Channel with CMS in pp Collisions at 7 TeV, CMS-PAS-HIG-12-007.

  43. XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    Article  ADS  Google Scholar 

  44. A. Dedes, G. Degrassi and P. Slavich, On the two loop Yukawa corrections to the MSSM Higgs boson masses at large tan beta, Nucl. Phys. B 672 (2003) 144 [hep-ph/0305127] [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Precise prediction for the W boson mass in the standard model, Phys. Rev. D 69 (2004) 053006 [hep-ph/0311148] [INSPIRE].

    ADS  Google Scholar 

  46. M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Complete two-loop electroweak fermionic corrections to sin2 \( \theta_{\mathrm{eff}}^{\mathrm{lept}} \) and indirect determination of the Higgs boson mass, Phys. Rev. Lett. 93 (2004) 201805 [hep-ph/0407317] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Djouadi et al., Leading QCD corrections to scalar quark contributions to electroweak precision observables, Phys. Rev. D 57 (1998) 4179 [hep-ph/9710438] [INSPIRE].

    ADS  Google Scholar 

  48. G. Degrassi, P. Gambino and P. Slavich, SusyBSG: A Fortran code for BR[BX(s)γ] in the MSSM with Minimal Flavor Violation, Comput. Phys. Commun. 179 (2008) 759 [arXiv:0712.3265] [INSPIRE].

    Article  ADS  Google Scholar 

  49. G. Degrassi, P. Gambino and P. Slavich, QCD corrections to radiative B decays in the MSSM with minimal flavor violation, Phys. Lett. B 635 (2006) 335 [hep-ph/0601135] [INSPIRE].

    ADS  Google Scholar 

  50. G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

    Article  ADS  Google Scholar 

  51. F. Mahmoudi, SuperIso v2.3: A Program for calculating flavor physics observables in Supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  52. http://superbayes.org.

  53. ATLAS collaboration, Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7 \) TeV pp, Phys. Rev. Lett. 106 (2011) 131802 [arXiv:1102.2357] [INSPIRE].

    Article  ADS  Google Scholar 

  54. B. Allanach, Impact of CMS Multi-jets and Missing Energy Search on CMSSM Fits, Phys. Rev. D 83 (2011) 095019 [arXiv:1102.3149] [INSPIRE].

    ADS  Google Scholar 

  55. F. Feroz and M. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Skilling, Nested sampling, in R.P.R. Fischer and U. von Toussaint eds., Bayesian Inference and Maximum Entropy Methods in Science and Engineering 735 (2004) 395.

  57. J. Skilling, Nested sampling for general bayesian computation, Bayesian Analysis 1 (2006) 833.

    Article  MathSciNet  Google Scholar 

  58. M. Cabrera, J. Casas and A. Delgado, Upper Bounds on Superpartner Masses from Upper Bounds on the Higgs Boson Mass, Phys. Rev. Lett. 108 (2012) 021802 [arXiv:1108.3867] [INSPIRE].

    Article  ADS  Google Scholar 

  59. G.F. Giudice and A. Strumia, Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].

    Article  ADS  Google Scholar 

  60. ATLAS collaboration, Physics at a High-Luminosity LHC with ATLAS, ATL-PHYS-PUB-2012-001 (2012).

  61. J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].

    ADS  Google Scholar 

  62. J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].

    ADS  Google Scholar 

  63. Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  64. Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric standard model, Phys. Lett. B 262 (1991) 54 [INSPIRE].

    ADS  Google Scholar 

  65. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

    Article  ADS  Google Scholar 

  66. R. Barbieri, M. Frigeni and F. Caravaglios, The Supersymmetric Higgs for heavy superpartners, Phys. Lett. B 258 (1991) 167 [INSPIRE].

    ADS  Google Scholar 

  67. M.S. Carena, J. Espinosa, M. Quirós and C. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316] [INSPIRE].

    ADS  Google Scholar 

  68. L. Aparicio, D. Cerdeno and L. Ibáñez, A 119-125 GeV Higgs from a string derived slice of the CMSSM, JHEP 04 (2012) 126 [arXiv:1202.0822] [INSPIRE].

    Article  ADS  Google Scholar 

  69. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

    Article  ADS  Google Scholar 

  70. L. Knox and M.S. Turner, Inflation at the electroweak scale, Phys. Rev. Lett. 70 (1993) 371 [astro-ph/9209006] [INSPIRE].

    Article  ADS  Google Scholar 

  71. A. Ibarra and D. Tran, Decaying Dark Matter and the PAMELA Anomaly, JCAP 02 (2009) 021 [arXiv:0811.1555] [INSPIRE].

    Article  ADS  Google Scholar 

  72. M. Pato et al., Complementarity of Dark Matter Direct Detection Targets, Phys. Rev. D 83 (2011) 083505 [arXiv:1012.3458] [INSPIRE].

    ADS  Google Scholar 

  73. J.R. Ellis, K.A. Olive and C. Savage, Hadronic Uncertainties in the Elastic Scattering of Supersymmetric Dark Matter, Phys. Rev. D 77 (2008) 065026 [arXiv:0801.3656] [INSPIRE].

    ADS  Google Scholar 

  74. G. Bertone et al., Global fits of the CMSSM including the first LHC and XENON100 data, JCAP 01 (2012) 015 [arXiv:1107.1715] [INSPIRE].

    Article  ADS  Google Scholar 

  75. N. Arkani-Hamed, A. Delgado and G. Giudice, The Well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].

    Article  ADS  Google Scholar 

  76. G. Bertone, K. Kong, R.R. de Austri and R. Trotta, Global fits of the Minimal Universal Extra Dimensions scenario, Phys. Rev. D 83 (2011) 036008 [arXiv:1010.2023] [INSPIRE].

    ADS  Google Scholar 

  77. G. Bertone, D.G. Cerdeno, M. Fornasa, R.R. de Austri and R. Trotta, Identification of Dark Matter particles with LHC and direct detection data, Phys. Rev. D 82 (2010) 055008 [arXiv:1005.4280] [INSPIRE].

    ADS  Google Scholar 

  78. M. Davier, A. Hoecker, B. Malaescu, C. Yuan and Z. Zhang, Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e + e → π+π cross section data from BABAR, Eur. Phys. J. C 66 (2010) 1 [arXiv:0908.4300] [INSPIRE].

    Article  ADS  Google Scholar 

  79. M. Davier et al., The Discrepancy Between tau and e + e Spectral Functions Revisited and the Consequences for the Muon Magnetic Anomaly, Eur. Phys. J. C 66 (2010) 127 [arXiv:0906.5443] [INSPIRE].

    Article  ADS  Google Scholar 

  80. G. Degrassi and G. Giudice, QED logarithms in the electroweak corrections to the muon anomalous magnetic moment, Phys. Rev. D 58 (1998) 053007 [hep-ph/9803384] [INSPIRE].

    ADS  Google Scholar 

  81. S. Heinemeyer, D. Stöckinger and G. Weiglein, Two loop SUSY corrections to the anomalous magnetic moment of the muon, Nucl. Phys. B 690 (2004) 62 [hep-ph/0312264] [INSPIRE].

    Article  ADS  Google Scholar 

  82. S. Heinemeyer, D. Stöckinger and G. Weiglein, Electroweak and supersymmetric two-loop corrections to μ(\( g \) − 2), Nucl. Phys. B 699 (2004) 103 [hep-ph/0405255] [INSPIRE].

    Article  ADS  Google Scholar 

  83. S. Marchetti, S. Mertens, U. Nierste and D. Stöckinger, tan β-enhanced supersymmetric corrections to the anomalous magnetic moment of the muon, Phys. Rev. D 79 (2009) 013010 [arXiv:0808.1530] [INSPIRE].

    ADS  Google Scholar 

  84. P. von Weitershausen, M. Schafer, H. Stöckinger-Kim and D. Stöckinger, Photonic SUSY Two-Loop Corrections to the Muon Magnetic Moment, Phys. Rev. D 81 (2010) 093004 [arXiv:1003.5820] [INSPIRE].

    ADS  Google Scholar 

  85. R. Trotta, Applications of Bayesian model selection to cosmological parameters, Mon. Not. Roy. Astron. Soc. 378 (2007) 72 [astro-ph/0504022] [INSPIRE].

    Article  ADS  Google Scholar 

  86. R. Trotta, Bayes in the sky: Bayesian inference and model selection in cosmology, Contemp. Phys. 49 (2008) 71 [arXiv:0803.4089] [INSPIRE].

    Article  ADS  Google Scholar 

  87. F. Feroz, M.P. Hobson, L. Roszkowski, R. Ruiz de Austri and R. Trotta, Are BR(\( \overline{B} \)Xsγ) and (\( g \) − 2) μ consistent within the Constrained MSSM?, arXiv:0903.2487 [INSPIRE].

  88. M.E. Cabrera, J.A. Casas, R. Ruiz de Austri and R. Trotta, Quantifying the tension between the Higgs mass and (\( g \) − 2) μ in the CMSSM, Phys. Rev. D 84 (2011) 015006 [arXiv:1011.5935] [INSPIRE].

    ADS  Google Scholar 

  89. H. Jeffreys, Theory of probability, 3rd ed., Oxford Classics series (reprinted 1998), Oxford University Press, Oxford, U.K. (1961).

  90. B. de Carlos and J. Casas, One loop analysis of the electroweak breaking in supersymmetric models and the fine tuning problem, Phys. Lett. B 309 (1993) 320 [hep-ph/9303291] [INSPIRE].

    ADS  Google Scholar 

  91. G.W. Anderson and D.J. Castano, Measures of fine tuning, Phys. Lett. B 347 (1995) 300 [hep-ph/9409419] [INSPIRE].

    ADS  Google Scholar 

  92. P. Ciafaloni and A. Strumia, Naturalness upper bounds on gauge mediated soft terms, Nucl. Phys. B 494 (1997) 41 [hep-ph/9611204] [INSPIRE].

    Article  ADS  Google Scholar 

  93. L. Giusti, A. Romanino and A. Strumia, Natural ranges of supersymmetric signals, Nucl. Phys. B 550 (1999) 3 [hep-ph/9811386] [INSPIRE].

    Article  ADS  Google Scholar 

  94. J. Casas, J. Espinosa and I. Hidalgo, Implications for new physics from fine-tuning arguments. 1. Application to SUSY and seesaw cases, JHEP 11 (2004) 057 [hep-ph/0410298] [INSPIRE].

    Article  ADS  Google Scholar 

  95. J.A. Casas, J.R. Espinosa and I. Hidalgo, Implications for new physics from fine-tuning arguments. II. Little Higgs models, JHEP 03 (2005) 038 [hep-ph/0502066] [INSPIRE].

    Article  ADS  Google Scholar 

  96. B. Allanach, Naturalness priors and fits to the constrained minimal supersymmetric standard model, Phys. Lett. B 635 (2006) 123 [hep-ph/0601089] [INSPIRE].

    ADS  Google Scholar 

  97. P. Athron and Miller, D.J., A New Measure of Fine Tuning, Phys. Rev. D 76 (2007) 075010 [arXiv:0705.2241] [INSPIRE].

    ADS  Google Scholar 

  98. S. Fichet, Quantified naturalness from Bayesian statistics, Phys. Rev. D 86 (2012) 125029 [arXiv:1204.4940] [INSPIRE].

    ADS  Google Scholar 

  99. D. Ghilencea and G. Ross, The fine-tuning cost of the likelihood in SUSY models, Nucl. Phys. B 868 (2013) 65 [arXiv:1208.0837] [INSPIRE].

    Article  ADS  Google Scholar 

  100. S.P. Martin, Compressed supersymmetry and natural neutralino dark matter from top squark-mediated annihilation to top quarks, Phys. Rev. D 75 (2007) 115005 [hep-ph/0703097] [INSPIRE].

    ADS  Google Scholar 

  101. Y. Akrami, P. Scott, J. Edsjo, J. Conrad and L. Bergstrom, A Profile Likelihood Analysis of the Constrained MSSM with Genetic Algorithms, JHEP 04 (2010) 057 [arXiv:0910.3950] [INSPIRE].

    Article  ADS  Google Scholar 

  102. F. Feroz, K. Cranmer, M. Hobson, R. Ruiz de Austri and R. Trotta, Challenges of Profile Likelihood Evaluation in Multi-Dimensional SUSY Scans, JHEP 06 (2011) 042 [arXiv:1101.3296] [INSPIRE].

    Article  ADS  Google Scholar 

  103. J.L. Feng, K.T. Matchev and T. Moroi, Multi - TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [INSPIRE].

    Article  ADS  Google Scholar 

  104. H.E. Haber, R. Hempfling and A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C 75 (1997) 539 [hep-ph/9609331] [INSPIRE].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Ruiz de Austri.

Additional information

ArXiv ePrint: 1212.4821

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabrera, M.E., Casas, J.A. & de Austri, R.R. The health of SUSY after the Higgs discovery and the XENON100 data. J. High Energ. Phys. 2013, 182 (2013). https://doi.org/10.1007/JHEP07(2013)182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)182

Keywords

Navigation