Skip to main content
Log in

Challenges of profile likelihood evaluation in multi-dimensional SUSY scans

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Statistical inference of the fundamental parameters of supersymmetric theories is a challenging and active endeavor. Several sophisticated algorithms have been employed to this end. While Markov-Chain Monte Carlo (MCMC) and nested sampling techniques are geared towards Bayesian inference, they have also been used to estimate frequentist conifidence intervals based on the profile likelihood ratio. We investigate the performance and appropriate configuration of MultiNest, a nested sampling based algorithm, when used for profile likelihood-based analyses both on toy models and on the parameter space of the Constrained MSSM. We find that while the standard configuration previously used in the literarture is appropriate for an accurate reconstruction of the Bayesian posterior, the profile likelihood is poorly approximated. We identify a more appropriate MultiNest configuration for profile likelihood analyses, which gives an excellent exploration of the profile likelihood (albeit at a larger computational cost), including the identification of the global maximum likelihood value. We conclude that with the appropriate configuration MultiNest is a suitable tool for profile likelihood studies, indicating previous claims to the contrary are not well founded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, V. Khachatryan et al., Search for supersymmetry in pp collisions at 7TeV in events with jets and missing transverse energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [SPIRES].

    ADS  Google Scholar 

  2. R.G. Roberts and L. Roszkowski, Implications for minimal supersymmetry from grand unification and the neutrino relic abundance, Phys. Lett. B 309 (1993) 329 [hep-ph/9301267] [SPIRES].

    ADS  Google Scholar 

  3. G.L. Kane, C.F. Kolda, L. Roszkowski and J.D. Wells, Study of constrained minimal supersymmetry, Phys. Rev. D 49 (1994) 6173 [hep-ph/9312272] [SPIRES].

    ADS  Google Scholar 

  4. J.R. Ellis, K.A. Olive, Y. Santoso and V. C. Spanos, Likelihood analysis of the CMSSM parameter space, Phys. Rev. D 69 (2004) 095004 [hep-ph/0310356] [SPIRES].

    ADS  Google Scholar 

  5. S. Profumo and C. E. Yaguna, A statistical analysis of supersymmetric dark matter in the MSSM after WMAP, Phys. Rev. D 70 (2004) 095004 [hep-ph/0407036] [SPIRES].

    ADS  Google Scholar 

  6. E.A. Baltz and P. Gondolo, Markov chain Monte Carlo exploration of minimal supergravity with implications for dark matter, JHEP 10 (2004) 052 [hep-ph/0407039] [SPIRES].

    Article  ADS  Google Scholar 

  7. R.R. de Austri, R. Trotta and L. Roszkowski, A Markov chain Monte Carlo analysis of the CMSSM, JHEP 05 (2006) 002 [hep-ph/0602028] [SPIRES].

    Article  Google Scholar 

  8. B.C. Allanach and C.G. Lester, Multi-dimensional mSUGRA likelihood maps, Phys. Rev. D 73 (2006) 015013 [hep-ph/0507283] [SPIRES].

    ADS  Google Scholar 

  9. J. Skilling, Nested sampling, in American Institute of Physics Conference Series 735, R. Fischer, R. Preuss, and U.V. Toussaint eds., (2004), p.395.

  10. D. Sivia and J. Skilling, Data analysis a Bayesian tutorial. Oxford University Press, Oxford U.K. (2006).

    MATH  Google Scholar 

  11. S.S. AbdusSalam, B.C. Allanach, M.J. Dolan, F. Feroz and M.P. Hobson, Selecting a model of supersymmetry breaking mediation, Phys. Rev. D 80 (2009) 035017 [arXiv:0906.0957] [SPIRES].

    ADS  Google Scholar 

  12. S.S. AbdusSalam, B.C. Allanach, F. Quevedo, F. Feroz and M. Hobson, Fitting the phenomenological MSSM, Phys. Rev. D 81 (2010) 095012 [arXiv:0904.2548] [SPIRES].

    ADS  Google Scholar 

  13. F. Feroz, M.P. Hobson, L. Roszkowski, R. Ruiz de Austri and R. Trotta, Are BR(b → s γ) and (g − 2) muon consistent within the Constrained MSSM?, arXiv:0903.2487 [SPIRES].

  14. R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski and R. Ruiz de Austri, The impact of priors and observables on parameter inferences in the constrained MSSM, JHEP 12 (2008) 024 [arXiv:0809.3792] [SPIRES].

    Article  ADS  Google Scholar 

  15. F. Feroz et al., Bayesian selection of sign(mu) within mSUGRA in global fits including WMAP5 results, JHEP 10 (2008) 064 [arXiv:0807.4512] [SPIRES].

    Article  ADS  Google Scholar 

  16. M.J. White and F. Feroz, MSSM dark matter measurements at the LHC without squarks and sleptons, JHEP 07 (2010) 064 [arXiv:1002.1922] [SPIRES].

    Article  ADS  Google Scholar 

  17. G. Bertone, K. Kong, R.R. de Austri and R. Trotta, Global fits of the minimal universal extra dimensions scenario, Phys. Rev. D 83 (2011) 036008 [arXiv:1010.2023] [SPIRES].

    ADS  Google Scholar 

  18. L. Roszkowski, R. Ruiz de Austri and R. Trotta, Efficient reconstruction of CMSSM parameters from LHC data — A case study, Phys. Rev. D 82 (2010) 055003 [arXiv:0907.0594] [SPIRES].

    ADS  Google Scholar 

  19. P. Scott et al., Direct constraints on minimal supersymmetry from Fermi-LAT observations of the dwarf galaxy Segue 1, JCAP 01 (2010) 031 [arXiv:0909.3300] [SPIRES].

    ADS  Google Scholar 

  20. J. Ripken, J. Conrad and P. Scott, Direct constraints on the CMSSM using H.E.S.S. observations of the Galactic Centre and the Sagittarius dwarf galaxy, arXiv:1012.3939 [SPIRES].

  21. L. Roszkowski, R. Ruiz de Austri, R. Trotta, Y.-L.S. Tsai and T.A. Varley, Global fits of the non-universal higgs model, Phys. Rev. D 83 (2011) 015014 [arXiv:0903.1279] [SPIRES].

    ADS  Google Scholar 

  22. B.C. Allanach, K. Cranmer, C.G. Lester and A.M. Weber, Natural priors, CMSSM fits and LHC weather forecasts, JHEP 08 (2007) 023 [arXiv:0705.0487] [SPIRES].

    Article  ADS  Google Scholar 

  23. F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, arXiv:0704.3704 [SPIRES].

  24. F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, arXiv:0809.3437 [SPIRES].

  25. M. Bridges et al., A coverage study of the CMSSM based on ATLAS sensitivity using fast neural networks techniques, JHEP 03 (2011) 012 [arXiv:1011.4306] [SPIRES].

    Article  ADS  Google Scholar 

  26. Y. Akrami, P. Scott, J. Edsjo, J. Conrad and L. Bergstrom, A profile likelihood analysis of the constrained MSSM with genetic algorithms, JHEP 04 (2010) 057 [arXiv:0910.3950] [SPIRES].

    Article  ADS  Google Scholar 

  27. R. Trotta, Bayes in the sky: Bayesian inference and model selection in cosmology, Contemp. Phys. 49 (2008) 71 [arXiv:0803.4089] [SPIRES].

    Article  ADS  Google Scholar 

  28. S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Statist. 9 (1938) 60.

    Article  MATH  Google Scholar 

  29. M. Bartlett, Properties of sufficiency and statistical tests, Journal of the Royal Statistical Society A 160 (1937) 268.

    Google Scholar 

  30. D.R. Cox and N. Reid, Parameter orthogonality and approximate conditional inference, Journal of the Royal Statistical Society B 49 (1987) 1.

    MathSciNet  MATH  Google Scholar 

  31. O. Barndorff-Nielsen and D. Cox, Bartlett adjustments to the likelihood ratio statistic to the distribution of the maximum likelihood estimator, Journal of the Royal Statistical Society B 46 (1984) 483.

    MathSciNet  Google Scholar 

  32. G.R. Farrar and P. Fayet, Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575 [SPIRES].

    ADS  Google Scholar 

  33. S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [SPIRES].

    Article  ADS  Google Scholar 

  34. L. Álvarez-Gaumé, J. Polchinski and M.B. Wise, Minimal low-energy supergravity, Nucl. Phys. B 221 (1983) 495 [SPIRES].

    Article  ADS  Google Scholar 

  35. J.P. Conlon and F. Quevedo, Gaugino and scalar masses in the landscape, JHEP 06 (2006) 029 [hep-th/0605141] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Brignole, L.E. Ibáñez and C. Muñoz, Towards a theory of soft terms for the supersymmetric Standard Model, Nucl. Phys. B 422 (1994) 125 [hep-ph/9308271] [SPIRES].

    Article  ADS  Google Scholar 

  37. O. Buchmueller et al., Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1, Eur. Phys. J. C 64 (2009) 391 [arXiv:0907.5568] [SPIRES].

    Article  ADS  Google Scholar 

  38. L. Roszkowski, R. Ruiz de Austri and R. Trotta, Implications for the Constrained MSSM from a new prediction for b → s gamma, JHEP 07 (2007) 075 [arXiv:0705.2012] [SPIRES].

    Article  ADS  Google Scholar 

  39. L. Roszkowski, R. Ruiz de Austri and R. Trotta, Efficient reconstruction of CMSSM parameters from LHC data — A case study, Phys. Rev. D 82 (2010) 055003 [arXiv:0907.0594] [SPIRES].

    ADS  Google Scholar 

  40. Y. Akrami, C. Savage, P. Scott, J. Conrad and J. Edsjo, Statistical coverage for supersymmetric parameter estimation: a case study with direct detection of dark matter, arXiv:1011.4297 [SPIRES].

  41. CDMS collaboration, Z. Ahmed et al., Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the Soudan Underground Laboratory, Phys. Rev. Lett. 102 (2009) 011301 [arXiv:0802.3530] [SPIRES].

    Article  ADS  Google Scholar 

  42. XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, arXiv:1104.2549 [SPIRES].

  43. L.E. Strigari and R. Trotta, Reconstructing WIMP properties in direct detection experiments including galactic dark matter distribution uncertainties, JCAP 11 (2009) 019 [arXiv:0906.5361] [SPIRES].

    ADS  Google Scholar 

  44. C. McCabe, The astrophysical uncertainties of dark matter direct detection experiments, Phys. Rev. D 82 (2010) 023530 [arXiv:1005.0579] [SPIRES].

    ADS  Google Scholar 

  45. A.M. Green, Dependence of direct detection signals on the WIMP velocity distribution, JCAP 10 (2010) 034 [arXiv:1009.0916] [SPIRES].

    ADS  Google Scholar 

  46. M. Pato, O. Agertz, G. Bertone, B. Moore and R. Teyssier, Systematic uncertainties in the determination of the local dark matter density, Phys. Rev. D 82 (2010) 023531 [arXiv:1006.1322] [SPIRES].

    ADS  Google Scholar 

  47. F.S. Ling, E. Nezri, E. Athanassoula and R. Teyssier, Dark matter direct detection signals inferred from a cosmological N-body simulation with baryons, JCAP 02 (2010) 012 [arXiv:0909.2028] [SPIRES].

    ADS  Google Scholar 

  48. J.R. Ellis, K.A. Olive and C. Savage, Hadronic uncertainties in the elastic scattering of supersymmetric dark matter, Phys. Rev. D 77 (2008) 065026 [arXiv:0801.3656] [SPIRES].

    ADS  Google Scholar 

  49. LAT collaboration, W.B. Atwood et al., The large area telescope on the Fermi gamma-ray space telescope mission, Astrophys. J. 697 (2009) 1071 [arXiv:0902.1089] [SPIRES].

    Article  ADS  Google Scholar 

  50. F. James and M. Roos, Minuit: a system for function minimization and analysis of the parameter errors and correlations, Comput. Phys. Commun. 10 (1975) 343 [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Trotta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feroz, F., Cranmer, K., Hobson, M. et al. Challenges of profile likelihood evaluation in multi-dimensional SUSY scans. J. High Energ. Phys. 2011, 42 (2011). https://doi.org/10.1007/JHEP06(2011)042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)042

Keywords

Navigation