Skip to main content
Log in

MSSM forecast for the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of M Z is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on e + e data) is considered, the preferred region (for μ > 0) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative-μ possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.C. Allanach and C.G. Lester, Multi-dimensional mSUGRA likelihood maps, Phys. Rev. D 73 (2006) 015013 [hep-ph/0507283] [SPIRES].

    ADS  Google Scholar 

  2. B.C. Allanach, Naturalness priors and fits to the constrained minimal supersymmetric standard model, Phys. Lett. B 635 (2006) 123 [hep-ph/0601089] [SPIRES].

    ADS  Google Scholar 

  3. R.R. de Austri, R. Trotta and L. Roszkowski, A Markov chain Monte Carlo analysis of the CMSSM, JHEP 05 (2006) 002 [hep-ph/0602028] [SPIRES].

    Article  Google Scholar 

  4. B.C. Allanach, K. Cranmer, C.G. Lester and A.M. Weber, Natural priors, CMSSM fits and LHC weather forecasts, JHEP 08 (2007) 023 [arXiv:0705.0487] [SPIRES].

    Article  ADS  Google Scholar 

  5. L. Roszkowski, R. Ruiz de Austri and R. Trotta, Implications for the constrained MSSM from a new prediction for bsγ, JHEP 07 (2007) 075 [arXiv:0705.2012] [SPIRES].

    Article  ADS  Google Scholar 

  6. O. Buchmueller et al., Predictions for supersymmetric particle masses in the CMSSM using indirect experimental and cosmological constraints, JHEP 09 (2008) 117 [arXiv:0808.4128] [SPIRES].

    Article  ADS  Google Scholar 

  7. R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski and R. Ruiz de Austri, The Impact of priors and observables on parameter inferences in the constrained MSSM, JHEP 12 (2008) 024 [arXiv:0809.3792] [SPIRES].

    Article  ADS  Google Scholar 

  8. J. Ellis, Prospects for discovering supersymmetry at the LHC, Eur. Phys. J. C 59 (2009) 335 [arXiv:0810.1178] [SPIRES].

    Article  ADS  Google Scholar 

  9. S.S. AbdusSalam, B.C. Allanach, F. Quevedo, F. Feroz and M. Hobson, Fitting the phenomenological MSSM, arXiv:0904.2548 [SPIRES].

  10. O. Buchmueller et al., Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1, Eur. Phys. J. C 64 (2009) 391 [arXiv:0907.5568] [SPIRES].

    Article  ADS  Google Scholar 

  11. G. D’Agostini, Probability and measurement uncertainty in physics — A bayesian primer, hep-ph/9512295 [SPIRES].

  12. R. Trotta, Bayes in the sky: bayesian inference and model selection in cosmology, Contemp. Phys. 49 (2008) 71 [arXiv:0803.4089] [SPIRES].

    Article  ADS  Google Scholar 

  13. S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES].

  14. J.R. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, Observables in low-energy superstring models, Mod. Phys. Lett. A 1 (1986) 57 [SPIRES].

    ADS  Google Scholar 

  15. R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [SPIRES].

    Article  ADS  Google Scholar 

  16. B. de Carlos and J.A. Casas, One loop analysis of the electroweak breaking in supersymmetric models and the fine tuning problem, Phys. Lett. B 309 (1993) 320 [hep-ph/9303291] [SPIRES].

    ADS  Google Scholar 

  17. G.W. Anderson and D.J. Castano, Measures of fine tuning, Phys. Lett. B 347 (1995) 300 [hep-ph/9409419] [SPIRES].

    ADS  Google Scholar 

  18. P. Athron and D.J. Miller, 2, A new measure of fine tuning, Phys. Rev. D 76 (2007) 075010 [arXiv:0705.2241] [SPIRES].

    ADS  Google Scholar 

  19. P. Ciafaloni and A. Strumia, Naturalness upper bounds on gauge mediated soft terms, Nucl. Phys. B 494 (1997) 41 [hep-ph/9611204] [SPIRES].

    Article  ADS  Google Scholar 

  20. J.A. Casas, J.R. Espinosa and I. Hidalgo, Implications for new physics from fine-tuning arguments. I: application to SUSY and seesaw cases, JHEP 11 (2004) 057 [hep-ph/0410298] [SPIRES].

    Article  ADS  Google Scholar 

  21. J.A. Casas, J.R. Espinosa and I. Hidalgo, Implications for new physics from fine-tuning arguments. II: little Higgs models, JHEP 03 (2005) 038 [hep-ph/0502066] [SPIRES].

    Article  ADS  Google Scholar 

  22. L. Giusti, A. Romanino and A. Strumia, Natural ranges of supersymmetric signals, Nucl. Phys. B 550 (1999) 3 [hep-ph/9811386] [SPIRES].

    Article  ADS  Google Scholar 

  23. A. Strumia, Naturalness of supersymmetric models, hep-ph/9904247 [SPIRES].

  24. F. Feruglio, A. Strumia and F. Vissani, Neutrino oscillations and signals in β and 0ν2β experiments, Nucl. Phys. B 637 (2002) 345 [Addendum ibid. B 659 (2003) 359] [hep-ph/0201291] [SPIRES].

    Article  ADS  Google Scholar 

  25. M.E. Cabrera, J.A. Casas and R. Ruiz de Austri, Bayesian approach and naturalness in MSSM analyses for the LHC, JHEP 03 (2009) 075 [arXiv:0812.0536] [SPIRES].

    Article  ADS  Google Scholar 

  26. J.O. Berger, B. Liseo and R.L. Wolpert, Integrated likelihood methods for eliminating nuisance variables, Stat. Sci. 14 (1999) 1.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. B.C. Allanach, SOFTSUSY: a C++ program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  28. L.E. Ibáñez and C. Lopez, N = 1 supergravity, the weak scale and the low-energy particle pectrum, Nucl. Phys. B 233 (1984) 511 [SPIRES].

    Article  ADS  Google Scholar 

  29. L.J. Hall, R. Rattazzi and U. Sarid, The Top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [SPIRES].

    ADS  Google Scholar 

  30. A.E. Nelson and L. Randall, Naturally large tan β, Phys. Lett. B 316 (1993) 516 [hep-ph/9308277] [SPIRES].

    ADS  Google Scholar 

  31. V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040] [SPIRES].

    ADS  Google Scholar 

  32. G.F. Giudice and A. Masiero, A natural solution to the μ problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [SPIRES].

    ADS  Google Scholar 

  33. F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449.

    Article  ADS  Google Scholar 

  34. http://superbayes.org

  35. J. Skilling, Nested sampling, in the proceedings of the 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, R. Fischer et al. eds., American Institute of Physics, (2004), pag. 395.

  36. J. Skilling, Nested sampling for general Bayesian computation, Bayesian Analysis 1 (2006) 833.

    Article  MathSciNet  Google Scholar 

  37. ALEPH, DELHI and L3 collaboration, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [SPIRES].

  38. J.A. Casas, J.R. Espinosa and H.E. Haber, The Higgs mass in the MSSM infrared fixed point scenario, Nucl. Phys. B 526 (1998) 3 [hep-ph/9801365] [SPIRES].

    Article  ADS  Google Scholar 

  39. H. Baer, C.-h. Chen, M. Drees, F. Paige and X. Tata, Supersymmetry reach of Tevatron upgrades: the large tan β case, Phys. Rev. D 58 (1998) 075008 [hep-ph/9802441] [SPIRES].

  40. M. Jurcisin and D.I. Kazakov, Infrared quasi fixed points and mass predictions in the MSSM. II: large tan β scenario, Mod. Phys. Lett. A 14 (1999) 671 [hep-ph/9902290] [SPIRES].

    ADS  Google Scholar 

  41. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive and M. Srednicki, The CMSSM parameter space at large tan β, Phys. Lett. B 510 (2001) 236 [hep-ph/0102098] [SPIRES].

    ADS  Google Scholar 

  42. CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [SPIRES].

    ADS  Google Scholar 

  43. The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment — Detector, trigger and physics, arXiv:0901.0512 [SPIRES].

  44. H. Baer, V. Barger, A. Lessa and X. Tata, Supersymmetry discovery potential of the LHC at \( \sqrt s = 10 \) and 14 TeV without and with missing ET, JHEP 09 (2009) 063 [arXiv:0907.1922] [SPIRES].

    Article  ADS  Google Scholar 

  45. L. Susskind, Supersymmetry breaking in the anthropic landscape, hep-th/0405189 [SPIRES].

  46. Tevatron Electroweak Working Group collaboration, A combination of CDF and D0 results on the mass of the top quark, arXiv:0803.1683 [SPIRES].

  47. Particle Data Group collaboration, W.M. Yao et al., Review of particle physics, J. Phys. G 33 (2006) 1 [SPIRES].

    ADS  Google Scholar 

  48. K. Hagiwara, A.D. Martin, D. Nomura and T. Teubner, Improved predictions for g − 2 of the muon and α QED(M Z 2), Phys. Lett. B 649 (2007) 173 [hep-ph/0611102] [SPIRES].

    ADS  Google Scholar 

  49. A. Dedes, G. Degrassi and P. Slavich, On the two-loop Yukawa corrections to the MSSM Higgs boson masses at large tan β, Nucl. Phys. B 672 (2003) 144 [hep-ph/0305127] [SPIRES].

    Article  ADS  Google Scholar 

  50. M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Precise prediction for the W-boson mass in the standard model, Phys. Rev. D 69 (2004) 053006 [hep-ph/0311148] [SPIRES].

    ADS  Google Scholar 

  51. M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Complete two-loop electroweak fermionic corrections to sin2 θ lepteff and indirect determination of the Higgs boson mass, Phys. Rev. Lett. 93 (2004) 201805 [hep-ph/0407317] [SPIRES].

    Article  ADS  Google Scholar 

  52. A. Djouadi et al., Leading QCD corrections to scalar quark contributions to electroweak precision observables, Phys. Rev. D 57 (1998) 4179 [hep-ph/9710438] [SPIRES].

    ADS  Google Scholar 

  53. W. de Boer and C. Sander, Global electroweak fits and gauge coupling unification, Phys. Lett. B 585 (2004) 276 [hep-ph/0307049] [SPIRES].

    ADS  Google Scholar 

  54. S. Heinemeyer, W. Hollik and G. Weiglein, Electroweak precision observables in the minimal supersymmetric standard model, Phys. Rept. 425 (2006) 265 [hep-ph/0412214] [SPIRES].

    Article  ADS  Google Scholar 

  55. R. Barbieri and A. Strumia, The ’LEP paradox’, hep-ph/0007265 [SPIRES].

  56. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [SPIRES].

    Article  ADS  Google Scholar 

  57. G. Degrassi, P. Gambino and P. Slavich, SusyBSG: a Fortran code for BR[BX s γ] in the MSSM with minimal flavor violation, Comput. Phys. Commun. 179 (2008) 759 [arXiv:0712.3265] [SPIRES].

    Article  ADS  Google Scholar 

  58. G. Degrassi, P. Gambino and P. Slavich, QCD corrections to radiative B decays in the MSSM with minimal flavor violation, Phys. Lett. B 635 (2006) 335 [hep-ph/0601135] [SPIRES].

    ADS  Google Scholar 

  59. G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavour violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [SPIRES].

    Article  ADS  Google Scholar 

  60. J. Foster, K.-i. Okumura and L. Roszkowski, New Higgs effects in B physics in supersymmetry with general flavour mixing, Phys. Lett. B 609 (2005) 102 [hep-ph/0410323] [SPIRES].

    ADS  Google Scholar 

  61. F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [SPIRES].

    Article  ADS  Google Scholar 

  62. http://lepewwg.web.cern.ch/LEPEWWG.

  63. J.P. Miller, E. de Rafael and B.L. Roberts, Muon g − 2: review of Theory and Experiment, Rept. Prog. Phys. 70 (2007) 795 [hep-ph/0703049] [SPIRES].

    Article  ADS  Google Scholar 

  64. M. Davier et al., The discrepancy between τ and e + e spectral functions revisited and the consequences for the muon magnetic anomaly, Eur. Phys. J. C 66 (2010) 127 [arXiv:0906.5443] [SPIRES].

    Article  ADS  Google Scholar 

  65. CDF - Run II collaboration, A. Abulencia et al., Measurement of the \( B_s^0 - \bar B_s^0 \) oscillation frequency, Phys. Rev. Lett. 97 (2006) 062003 [hep-ex/0606027] [SPIRES].

    Article  ADS  Google Scholar 

  66. CDF collaboration, A. Abulencia et al., Observation of \( B_s^0 \ \bar B_s^0 \) oscillations, Phys. Rev. Lett. 97 (2006) 242003 [hep-ex/0609040] [SPIRES].

    Article  ADS  Google Scholar 

  67. Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [SPIRES].

  68. BABAR collaboration, B. Aubert et al., Measurement of branching fractions and CP and isospin asymmetries in BK*γ, arXiv:0808.1915 [SPIRES].

  69. BABAR collaboration, B. Aubert et al., Observation of the semileptonic decays \( B \to {D^*}{\tau^{-} }\bar \nu \left( \tau \right) \) and evidence for \( B \to D{\tau^{-} }\bar \nu \left( \tau \right) \), Phys. Rev. Lett. 100 (2008) 021801 [arXiv:0709.1698] [SPIRES].

    Article  ADS  Google Scholar 

  70. FlaviaNet Working Group on Kaon Decays collaboration, M. Antonelli et al., Precision tests of the standard model with leptonic and semileptonic kaon decays, arXiv:0801.1817 [SPIRES].

  71. A.G. Akeroyd and F. Mahmoudi, Constraints on charged Higgs bosons from D(s)±μ ± ν and D(s)±μ ± ν, JHEP 04 (2009) 121 [arXiv:0902.2393] [SPIRES].

    Article  ADS  Google Scholar 

  72. WMAP collaboration, J. Dunkley et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: likelihoods and parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [SPIRES].

    Article  ADS  Google Scholar 

  73. CDF collaboration, A. Abulencia et al., Observation of \( B_s^0 \ \bar B_s^0 \) oscillations, Phys. Rev. Lett. 97 (2006) 242003 [hep-ex/0609040] [SPIRES].

    Article  ADS  Google Scholar 

  74. The LEP Higgs working group, http://lephiggs.web.cern.ch/LEPHIGGS.

  75. LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].

    ADS  Google Scholar 

  76. LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].

    ADS  Google Scholar 

  77. L. Roszkowski, R.R. de Austri and R. Trotta, On the detectability of the CMSSM light Higgs boson at the Tevatron, JHEP 04 (2007) 084 [hep-ph/0611173] [SPIRES].

    Article  ADS  Google Scholar 

  78. J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [SPIRES].

    ADS  Google Scholar 

  79. Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [SPIRES].

    Article  ADS  Google Scholar 

  80. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [SPIRES].

    Article  ADS  Google Scholar 

  81. R. Barbieri, M. Frigeni and F. Caravaglios, The supersymmetric Higgs for heavy superpartners, Phys. Lett. B 258 (1991) 167 [SPIRES].

    ADS  Google Scholar 

  82. J.R. Ellis, K.A. Olive and Y. Santoso, The MSSM parameter space with non-universal Higgs masses, Phys. Lett. B 539 (2002) 107 [hep-ph/0204192] [SPIRES].

    ADS  Google Scholar 

  83. M. Davier, A. Hoecker, B. Malaescu, C.Z. Yuan and Z. Zhang, Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e + e π + π cross section data from BABAR, Eur. Phys. J. C 66 (2010) 1 [arXiv:0908.4300] [SPIRES].

    Article  ADS  Google Scholar 

  84. S. Heinemeyer, D. Stöckinger and G. Weiglein, Electroweak and supersymmetric two-loop corrections to (g − 2)(μ), Nucl. Phys. B 699 (2004) 103 [hep-ph/0405255] [SPIRES].

    Article  ADS  Google Scholar 

  85. S. Marchetti, S. Mertens, U. Nierste and D. Stöckinger, tan β-enhanced supersymmetric corrections to the anomalous magnetic moment of the muon, Phys. Rev. D 79 (2009) 013010 [arXiv:0808.1530] [SPIRES].

    ADS  Google Scholar 

  86. F. Feroz, M.P. Hobson, L. Roszkowski, R. Ruiz de Austri and R. Trotta, Are BR(b) and (g − 2)μ consistent within the constrained MSSM?, arXiv:0903.2487 [SPIRES].

  87. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].

    Article  ADS  Google Scholar 

  88. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: a program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [SPIRES].

    Article  ADS  Google Scholar 

  89. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: version 1.3, Comput. Phys. Commun. 174 (2006) 577 [hep-ph/0405253] [SPIRES].

    Article  ADS  Google Scholar 

  90. L. Knox and M.S. Turner, Inflation at the electroweak scale, Phys. Rev. Lett. 70 (1993) 371 [astro-ph/9209006] [SPIRES].

    Article  ADS  Google Scholar 

  91. J. Garcia-Bellido, D.Y. Grigoriev, A. Kusenko and M.E. Shaposhnikov, Non-equilibrium electroweak baryogenesis from preheating after inflation, Phys. Rev. D 60 (1999) 123504 [hep-ph/9902449] [SPIRES].

    ADS  Google Scholar 

  92. A. Ibarra and D. Tran, Decaying dark matter and the PAMELA anomaly, JCAP 02 (2009) 021 [arXiv:0811.1555] [SPIRES].

    ADS  Google Scholar 

  93. H. Jeffreys, Theory of probability, 3rd ed., Oxford Classics series, Oxford University Press, Oxford U.K. (1961), reprinted 1998.

    MATH  Google Scholar 

  94. J.’O Ruanaidh and W. Fitzgerald, Numerical bayesian methods applied to signal processing, Springer Verlag, New York U.S.A. (1996).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Ruiz de Austri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabrera, M.E., Casas, J.A. & de Austri, R.R. MSSM forecast for the LHC. J. High Energ. Phys. 2010, 43 (2010). https://doi.org/10.1007/JHEP05(2010)043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2010)043

Keywords

Navigation