Skip to main content
Log in

Higgs boson mass in NMSSM with right-handed neutrino

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In order to have massive neutrinos, the right-handed neutrino/sneutrino superfield (N ) need to be introduced in supersymmetry. In the framework of NMSSM (the MSSM with a singlet S) such an extension will dynamically lead to a TeV-scale Majorana mass for the right-handed neutrino through the SN N coupling when S develops a vev (the free Majorana mass term is forbidden by the assumed Z 3 symmetry). Also, through the couplings SN N and SH u H d, the SM-like Higgs boson (a mixture of H u, H d and S) can naturally couple with the right-handed neutrino/sneutrino. As a result, the TeV-scale right-handed neutrino/sneutrino may significantly contribute to the Higgs boson mass. Through an explicit calculation, we find that the Higgs boson mass can indeed be sizably altered by the right-handed neutrino/sneutrino. Such new contribution can help to push up the SM-like Higgs boson mass and thus make the NMSSM more natural.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys. B 70 (1974) 39 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. M. Sohnius, Introducing supersymmetry, Phys. Rept. 128 (1985) 39 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].

    Article  ADS  Google Scholar 

  4. N. Sakai, Naturalness in supersymmetric guts, Z. Phys. C 11 (1981) 153 [INSPIRE].

    ADS  Google Scholar 

  5. H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [INSPIRE].

    Article  ADS  Google Scholar 

  6. J.E. Kim and H.P. Nilles, The μ problem and the strong CP problem, Phys. Lett. B 138 (1984) 150 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. J.R. Ellis, J. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs bosons in a nonminimal supersymmetric model, Phys. Rev. D 39 (1989) 844 [INSPIRE].

    ADS  Google Scholar 

  8. M. Drees, Supersymmetric models with extended Higgs sector, Int. J. Mod. Phys. A 4 (1989) 3635 [INSPIRE].

    ADS  Google Scholar 

  9. P. Pandita, One loop radiative corrections to the lightest Higgs scalar mass in nonminimal supersymmetric Standard Model, Phys. Lett. B 318 (1993) 338 [INSPIRE].

    ADS  Google Scholar 

  10. P. Pandita, Approximate formulas for the neutralino masses in the nonminimal supersymmetric standard model, Phys. Rev. D 50 (1994) 571 [INSPIRE].

    ADS  Google Scholar 

  11. S. King and P. White, Resolving the constrained minimal and next-to-minimal supersymmetric standard models, Phys. Rev. D 52 (1995) 4183 [hep-ph/9505326] [INSPIRE].

    ADS  Google Scholar 

  12. B. Ananthanarayan and P. Pandita, The nonminimal supersymmetric standard model with tan β approximately = m t)/m b, Phys. Lett. B 353 (1995) 70 [hep-ph/9503323] [INSPIRE].

    ADS  Google Scholar 

  13. B. Ananthanarayan and P. Pandita, Particle spectrum in the nonminimal supersymmetric standard model with tan β approximately = m t /m b, Phys. Lett. B 371 (1996) 245 [hep-ph/9511415] [INSPIRE].

    ADS  Google Scholar 

  14. B.A. Dobrescu and K.T. Matchev, Light axion within the next-to-minimal supersymmetric standard model, JHEP 09 (2000) 031 [hep-ph/0008192] [INSPIRE].

    Article  ADS  Google Scholar 

  15. V. Barger et al., Higgs sector in extensions of the MSSM, Phys. Rev. D 73 (2006) 115010 [hep-ph/0603247] [INSPIRE].

    ADS  Google Scholar 

  16. R. Dermisek and J.F. Gunion, Escaping the large fine tuning and little hierarchy problems in the next to minimal supersymmetric model and haa decays, Phys. Rev. Lett. 95 (2005) 041801 [hep-ph/0502105] [INSPIRE].

    Article  ADS  Google Scholar 

  17. G. Hiller, B physics signals of the lightest CP odd Higgs in the NMSSM at large tan beta, Phys. Rev. D 70 (2004) 034018 [hep-ph/0404220] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. F. Domingo and U. Ellwanger, Updated constraints from B physics on the MSSM and the NMSSM, JHEP 12 (2007) 090 [arXiv:0710.3714] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Z. Heng, R. Oakes, W. Wang, Z. Xiong and J.M. Yang, B meson dileptonic decays in the next-to-minimal supersymmetric model with a light CP-odd Higgs boson, Phys. Rev. D 77 (2008) 095012 [arXiv:0801.1169] [INSPIRE].

    ADS  Google Scholar 

  20. R.N. Hodgkinson and A. Pilaftsis, Radiative Yukawa couplings for supersymmetric Higgs singlets at large tan β, Phys. Rev. D 76 (2007) 015007 [hep-ph/0612188] [INSPIRE].

    ADS  Google Scholar 

  21. R.N. Hodgkinson and A. Pilaftsis, Supersymmetric Higgs singlet effects on B-meson FCNC observables at large tan β, Phys. Rev. D 78 (2008) 075004 [arXiv:0807.4167] [INSPIRE].

    ADS  Google Scholar 

  22. W. Wang, Z. Xiong and J.M. Yang, Residual effects of heavy sparticles in bottom quark Yukawa coupling: a comparative study for MSSM and NMSSM, Phys. Lett. B 680 (2009) 167 [arXiv:0901.3818] [INSPIRE].

    ADS  Google Scholar 

  23. J. Cao and J.M. Yang, Anomaly of Zbb coupling revisited in MSSM and NMSSM, JHEP 12 (2008) 006 [arXiv:0810.0751] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Cao and J.M. Yang, Current experimental constraints on NMSSM with large lambda, Phys. Rev. D 78 (2008) 115001 [arXiv:0810.0989] [INSPIRE].

    ADS  Google Scholar 

  25. U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. J. Cao, Z. Heng and J.M. Yang, Rare Z-decay into light CP-odd Higgs bosons: a comparative study in different new physics models, JHEP 11 (2010) 110 [arXiv:1007.1918] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Maniatis, The next-to-minimal supersymmetric extension of the standard model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. U. Ellwanger, Higgs bosons in the next-to-minimal supersymmetric standard model at the LHC, Eur. Phys. J. C 71 (2011) 1782 [arXiv:1108.0157] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J.-J. Cao, Z. Heng, J.M. Yang and J. Zhu, Higgs decay to dark matter in low energy SUSY: is it detectable at the LHC?, JHEP 06 (2012) 145 [arXiv:1203.0694] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J. Cao et al., Di-photon Higgs signal at the LHC: a comparative study for different supersymmetric models, Phys. Lett. B 703 (2011) 462 [arXiv:] [INSPIRE]

    ADS  Google Scholar 

  33. J. Cao, P. Wan, J.M. Yang and J. Zhu, The SM extension with color-octet scalars: diphoton enhancement and global fit of LHC Higgs data, arXiv:1303.2426 [INSPIRE].

  34. P. Fayet, Supergauge invariant extension of the Higgs Mechanism and a Model for the electron and Its Neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE].

    Article  ADS  Google Scholar 

  35. P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions, Phys. Lett. 69B (1977) 489 [INSPIRE].

    ADS  Google Scholar 

  36. D.G. Cerdeño, C. Muñoz and O. Seto, Right-handed sneutrino as thermal dark matter, Phys. Rev. D 79 (2009) 023510 [arXiv:0807.3029] [INSPIRE].

    ADS  Google Scholar 

  37. R. Kitano and K.-y. Oda, Neutrino masses in the supersymmetric standard model with right-handed neutrinos and spontaneous R-parity violation, Phys. Rev. D 61 (2000) 113001 [hep-ph/9911327] [INSPIRE].

    ADS  Google Scholar 

  38. D.G. Cerdeño and O. Seto, Right-handed sneutrino dark matter in the NMSSM, JCAP 08 (2009) 032 [arXiv:0903.4677] [INSPIRE].

    Article  ADS  Google Scholar 

  39. J. Cao and J.M. Yang, Lightest Higgs boson mass in split supersymmetry with the seesaw mechanism, Phys. Rev. D 71 (2005) 111701 [hep-ph/0412315] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: a Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].

    Article  ADS  Google Scholar 

  41. K. Ender, T. Graf, M. Muhlleitner and H. Rzehak, Analysis of the NMSSM Higgs boson masses at one-loop level, Phys. Rev. D 85 (2012) 075024 [arXiv:1111.4952] [INSPIRE].

    ADS  Google Scholar 

  42. D.J. Miller, R. Nevzorov and P. Zerwas, The Higgs sector of the next-to-minimal supersymmetric standard model, Nucl. Phys. B 681 (2004) 3 [hep-ph/0304049] [INSPIRE].

    Article  ADS  Google Scholar 

  43. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyu Wang.

Additional information

ArXiv ePrint: 1303.6465

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Yang, J.M. & You, L.L. Higgs boson mass in NMSSM with right-handed neutrino. J. High Energ. Phys. 2013, 158 (2013). https://doi.org/10.1007/JHEP07(2013)158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)158

Keywords

Navigation