D. Adams et al., Towards an Understanding of the Correlations in Jet Substructure, Eur. Phys. J.
C 75 (2015) 409 [arXiv:1504.00679] [INSPIRE].
ADS
Article
Google Scholar
A. Altheimer et al., Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012, Eur. Phys. J.
C 74 (2014) 2792 [arXiv:1311.2708] [INSPIRE].
A. Altheimer et al., Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks, J. Phys.
G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].
ADS
Article
Google Scholar
A. Abdesselam et al., Boosted objects: A probe of beyond the Standard Model physics, Eur. Phys. J.
C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].
ADS
Article
Google Scholar
F.V. Tkachov, Measuring multijet structure of hadronic energy flow or What is a jet?, Int. J. Mod. Phys.
A 12 (1997) 5411 [hep-ph/9601308] [INSPIRE].
N.A. Sveshnikov and F.V. Tkachov, Jets and quantum field theory, Phys. Lett.
B 382 (1996) 403 [hep-ph/9512370] [INSPIRE].
P.S. Cherzor and N.A. Sveshnikov, Jet observables and energy momentum tensor, in Quantum field theory and high-energy physics. Proceedings, Workshop, QFTHEP’97, Samara, Russia, September 4–10, 1997, pp. 402–407, (1997), hep-ph/9710349 [INSPIRE].
F.V. Tkachov, A theory of jet definition, Int. J. Mod. Phys.
A 17 (2002) 2783 [hep-ph/9901444] [INSPIRE].
J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, Jet-Images: Computer Vision Inspired Techniques for Jet Tagging, JHEP
02 (2015) 118 [arXiv:1407.5675] [INSPIRE].
ADS
Article
Google Scholar
L.G. Almeida, M. Backovic, M. Cliche, S.J. Lee and M. Perelstein, Playing Tag with ANN: Boosted Top Identification with Pattern Recognition, JHEP
07 (2015) 086 [arXiv:1501.05968] [INSPIRE].
ADS
Article
Google Scholar
L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-images — deep learning edition, JHEP
07 (2016) 069 [arXiv:1511.05190] [INSPIRE].
Article
Google Scholar
P. Baldi, K. Bauer, C. Eng, P. Sadowski and D. Whiteson, Jet Substructure Classification in High-Energy Physics with Deep Neural Networks, Phys. Rev.
D 93 (2016) 094034 [arXiv:1603.09349] [INSPIRE].
ADS
Google Scholar
D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban and D. Whiteson, Jet Flavor Classification in High-Energy Physics with Deep Neural Networks, Phys. Rev.
D 94 (2016) 112002 [arXiv:1607.08633] [INSPIRE].
ADS
Google Scholar
J.S. Conway, R. Bhaskar, R.D. Erbacher and J. Pilot, Identification of High-Momentum Top Quarks, Higgs Bosons and W and Z Bosons Using Boosted Event Shapes, Phys. Rev.
D 94 (2016) 094027 [arXiv:1606.06859] [INSPIRE].
ADS
Google Scholar
J. Barnard, E.N. Dawe, M.J. Dolan and N. Rajcic, Parton Shower Uncertainties in Jet Substructure Analyses with Deep Neural Networks, Phys. Rev.
D 95 (2017) 014018 [arXiv:1609.00607] [INSPIRE].
ADS
Google Scholar
P.T. Komiske, E.M. Metodiev and M.D. Schwartz, Deep learning in color: towards automated quark/gluon jet discrimination, JHEP
01 (2017) 110 [arXiv:1612.01551] [INSPIRE].
ADS
Article
Google Scholar
L. de Oliveira, M. Paganini and B. Nachman, Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis, arXiv:1701.05927 [INSPIRE].
G. Kasieczka, T. Plehn, M. Russell and T. Schell, Deep-learning Top Taggers or The End of QCD?, JHEP
05 (2017) 006 [arXiv:1701.08784] [INSPIRE].
ADS
Article
Google Scholar
G. Louppe, K. Cho, C. Becot and K. Cranmer, QCD-Aware Recursive Neural Networks for Jet Physics, arXiv:1702.00748 [INSPIRE].
L.M. Dery, B. Nachman, F. Rubbo and A. Schwartzman, Weakly Supervised Classification in High Energy Physics, JHEP
05 (2017) 145 [arXiv:1702.00414] [INSPIRE].
ADS
Article
Google Scholar
J. Pearkes, W. Fedorko, A. Lister and C. Gay, Jet Constituents for Deep Neural Network Based Top Quark Tagging, arXiv:1704.02124 [INSPIRE].
A.J. Larkoski and J. Thaler, Unsafe but Calculable: Ratios of Angularities in Perturbative QCD, JHEP
09 (2013) 137 [arXiv:1307.1699] [INSPIRE].
ADS
Article
Google Scholar
A.J. Larkoski, S. Marzani and J. Thaler, Sudakov Safety in Perturbative QCD, Phys. Rev.
D 91 (2015) 111501 [arXiv:1502.01719] [INSPIRE].
ADS
Google Scholar
I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett.
105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].
ADS
Article
Google Scholar
J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP
03 (2011) 015 [arXiv:1011.2268] [INSPIRE].
ADS
Article
Google Scholar
J. Thaler and K. Van Tilburg, Maximizing Boosted Top Identification by Minimizing N-subjettiness, JHEP
02 (2012) 093 [arXiv:1108.2701] [INSPIRE].
ADS
Article
Google Scholar
A.J. Larkoski, G.P. Salam and J. Thaler, Energy Correlation Functions for Jet Substructure, JHEP
06 (2013) 108 [arXiv:1305.0007] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
I. Moult, L. Necib and J. Thaler, New Angles on Energy Correlation Functions, JHEP
12 (2016) 153 [arXiv:1609.07483] [INSPIRE].
ADS
Article
Google Scholar
S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K
t
clustering algorithms for hadron-hadron collisions, Nucl. Phys.
B 406 (1993) 187 [INSPIRE].
ADS
Article
Google Scholar
S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev.
D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].
G.C. Blazey et al., Run II jet physics, in QCD and weak boson physics in Run II. Proceedings, Batavia, U.S.A., March 4-6, June 3-4, November 4-6, 1999, pp. 47–77, (2000), hep-ex/0005012 [INSPIRE].
D. Bertolini, T. Chan and J. Thaler, Jet Observables Without Jet Algorithms, JHEP
04 (2014) 013 [arXiv:1310.7584] [INSPIRE].
ADS
Article
Google Scholar
A.J. Larkoski, D. Neill and J. Thaler, Jet Shapes with the Broadening Axis, JHEP
04 (2014) 017 [arXiv:1401.2158] [INSPIRE].
ADS
Article
Google Scholar
A.J. Larkoski and J. Thaler, Aspects of jets at 100 TeV, Phys. Rev.
D 90 (2014) 034010 [arXiv:1406.7011] [INSPIRE].
ADS
Google Scholar
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP
07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
ADS
Article
Google Scholar
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP
05 (2006) 026 [hep-ph/0603175] [INSPIRE].
T. Sjötrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun.
191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J.
C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].
ADS
Article
Google Scholar
J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J.
C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J.
C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
ADS
Article
Google Scholar
M. Cacciari and G.P. Salam, Dispelling the N
3
myth for the k
t
jet-finder, Phys. Lett.
B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-k(t) jet clustering algorithm, JHEP
04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
ADS
Article
MATH
Google Scholar
A.J. Larkoski, I. Moult and D. Neill, Power Counting to Better Jet Observables, JHEP
12 (2014) 009 [arXiv:1409.6298] [INSPIRE].
ADS
Article
Google Scholar
The HDF Group, Hierarchical Data Format, version 5, 1997-NNNN, http://www.hdfgroup.org/HDF5/.
F. Chollet, Keras, https://github.com/fchollet/keras, (2015).
F. Pedregosa et al., Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res.
12 (2011) 2825.
MathSciNet
MATH
Google Scholar
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res.
15 (2014) 1929.
MathSciNet
MATH
Google Scholar
V. Nair and G.E. Hinton, Rectified linear units improve restricted boltzmann machines., in ICML, J. Fürnkranz and T. Joachims eds., Omnipress, (2010), pp. 807–814.
D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980.
A.J. Larkoski, I. Moult and D. Neill, Non-Global Logarithms, Factorization and the Soft Substructure of Jets, JHEP
09 (2015) 143 [arXiv:1501.04596] [INSPIRE].
ADS
Article
Google Scholar
A.J. Larkoski, I. Moult and D. Neill, Toward Multi-Differential Cross sections: Measuring Two Angularities on a Single Jet, JHEP
09 (2014) 046 [arXiv:1401.4458] [INSPIRE].
ADS
Article
Google Scholar
M. Procura, W.J. Waalewijn and L. Zeune, Resummation of Double-Differential Cross sections and Fully-Unintegrated Parton Distribution Functions, JHEP
02 (2015) 117 [arXiv:1410.6483] [INSPIRE].
ADS
Article
Google Scholar
A.J. Larkoski and I. Moult, The Singular Behavior of Jet Substructure Observables, Phys. Rev.
D 93 (2016) 014017 [arXiv:1510.08459] [INSPIRE].
ADS
Google Scholar
G.P. Salam, L. Schunk and G. Soyez, Dichroic subjettiness ratios to distinguish colour flows in boosted boson tagging, JHEP
03 (2017) 022 [arXiv:1612.03917] [INSPIRE].
ADS
Article
Google Scholar
J. Gallicchio and M.D. Schwartz, Quark and Gluon Jet Substructure, JHEP
04 (2013) 090 [arXiv:1211.7038] [INSPIRE].
ADS
Article
Google Scholar
ATLAS collaboration, Light-quark and gluon jet discrimination in pp collisions at
\( \sqrt{s}=7 \)
TeV with the ATLAS detector, Eur. Phys. J.
C 74 (2014) 3023 [arXiv:1405.6583] [INSPIRE].
A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (Mutual) Information about Quark/Gluon Discrimination, JHEP
11 (2014) 129 [arXiv:1408.3122] [INSPIRE].
ADS
Article
Google Scholar
E. Izaguirre, B. Shuve and I. Yavin, Improving Identification of Dijet Resonances at Hadron Colliders, Phys. Rev. Lett.
114 (2015) 041802 [arXiv:1407.7037] [INSPIRE].
ADS
Article
Google Scholar
A.J. Larkoski, I. Moult and D. Neill, Analytic Boosted Boson Discrimination, JHEP
05 (2016) 117 [arXiv:1507.03018] [INSPIRE].
ADS
Article
Google Scholar
J.R. Andersen et al., Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report, in 9th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2015) Les Houches, France, June 1-19, 2015, (2016), arXiv:1605.04692 [INSPIRE].
ATLAS collaboration, Measurement of the charged-particle multiplicity inside jets from
\( \sqrt{s}=8 \)
TeV pp collisions with the ATLAS detector, Eur. Phys. J.
C 76 (2016) 322 [arXiv:1602.00988] [INSPIRE].
P. Gras et al., Systematics of quark/gluon tagging, arXiv:1704.03878 [INSPIRE].
A. Hocker et al., TMVA - Toolkit for Multivariate Data Analysis, PoS(ACAT)040 [physics/0703039] [INSPIRE].
P. Speckmayer, A. Hocker, J. Stelzer and H. Voss, The toolkit for multivariate data analysis, TMVA 4, J. Phys. Conf. Ser.
219 (2010) 032057 [INSPIRE].
Article
Google Scholar