Abstract
Two-loop multi-leg form factors in off-shell kinematics require knowledge of planar and nonplanar double box Feynman diagrams with massless internal propagators. These are complicated functions of Mandelstam variables and external particle virtualities. The latter serve as regulators of infrared divergences, thus making these observables finite in four space-time dimensions. In this paper, we use the method of canonical differential equations for the calculation of (non)planar double box integrals in the near mass-shell kinematical regime, i.e., where virtualities of external particles are much smaller than the Mandelstam variables involved. We deduce a basis of master integrals with uniform transcendental weight based on the analysis of leading singularities employing the Baikov representation as well as an array of complementary techniques. We dub the former asymptotically canonical since it is valid in the near mass-shell limit of interest. We iteratively solve resulting differential equations up to weight four in terms of multiple polylogarithms.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
L.F. Alday, J.M. Henn, J. Plefka and T. Schuster, Scattering into the fifth dimension of N = 4 super Yang-Mills, JHEP 01 (2010) 077 [arXiv:0908.0684] [INSPIRE].
S. Caron-Huot and F. Coronado, Ten dimensional symmetry of \( \mathcal{N} \) = 4 SYM correlators, JHEP 03 (2022) 151 [arXiv:2106.03892] [INSPIRE].
L.V. Bork, N.B. Muzhichkov and E.S. Sozinov, Infrared properties of five-point massive amplitudes in \( \mathcal{N} \) = 4 SYM on the Coulomb branch, JHEP 08 (2022) 173 [arXiv:2201.08762] [INSPIRE].
A.V. Belitsky, L.V. Bork, A.F. Pikelner and V.A. Smirnov, Exact Off Shell Sudakov Form Factor in N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 130 (2023) 091605 [arXiv:2209.09263] [INSPIRE].
A.V. Belitsky, L.V. Bork and V.A. Smirnov, Off-shell form factor in \( \mathcal{N} \)=4 sYM at three loops, JHEP 11 (2023) 111 [arXiv:2306.16859] [INSPIRE].
A.H. Mueller, Perturbative QCD at High-Energies, Phys. Rept. 73 (1981) 237 [INSPIRE].
A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].
G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].
F. Coronado, Bootstrapping the Simplest Correlator in Planar \( \mathcal{N} \) = 4 Supersymmetric Yang-Mills Theory to All Loops, Phys. Rev. Lett. 124 (2020) 171601 [arXiv:1811.03282] [INSPIRE].
A.V. Belitsky and G.P. Korchemsky, Exact null octagon, JHEP 05 (2020) 070 [arXiv:1907.13131] [INSPIRE].
B. Basso, L.J. Dixon and G. Papathanasiou, Origin of the Six-Gluon Amplitude in Planar N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 124 (2020) 161603 [arXiv:2001.05460] [INSPIRE].
L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].
J. Maldacena and A. Zhiboedov, Form factors at strong coupling via a Y-system, JHEP 11 (2010) 104 [arXiv:1009.1139] [INSPIRE].
B. Basso, A. Sever and P. Vieira, Spacetime and Flux Tube S-Matrices at Finite Coupling for N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].
A. Sever, A.G. Tumanov and M. Wilhelm, Operator Product Expansion for Form Factors, Phys. Rev. Lett. 126 (2021) 031602 [arXiv:2009.11297] [INSPIRE].
S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A semiclassical limit of the gauge / string correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051] [INSPIRE].
B. Basso, Exciting the GKP string at any coupling, Nucl. Phys. B 857 (2012) 254 [arXiv:1010.5237] [INSPIRE].
A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].
T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
A.V. Smirnov and V.A. Smirnov, How to choose master integrals, Nucl. Phys. B 960 (2020) 115213 [arXiv:2002.08042] [INSPIRE].
C. Dlapa, X. Li and Y. Zhang, Leading singularities in Baikov representation and Feynman integrals with uniform transcendental weight, JHEP 07 (2021) 227 [arXiv:2103.04638] [INSPIRE].
S. He et al., A study of Feynman integrals with uniform transcendental weights and their symbology, JHEP 10 (2022) 165 [arXiv:2206.04609] [INSPIRE].
A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE].
R.N. Lee and A.A. Pomeransky, Critical points and number of master integrals, JHEP 11 (2013) 165 [arXiv:1308.6676] [INSPIRE].
A.V. Smirnov and M. Zeng, FIRE 6.5: Feynman Integral Reduction with New Simplification Library, arXiv:2311.02370 [INSPIRE].
R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
A.V. Belitsky, A.V. Smirnov and R.V. Yakovlev, Balancing act: Multivariate rational reconstruction for IBP, Nucl. Phys. B 993 (2023) 116253 [arXiv:2303.02511] [INSPIRE].
Sol supercomputer, https://asurc.atlassian.net/wiki/spaces/RC/pages/1640103978/Sol+Supercomputer.
Flint: Fast library for number theory, https://flintlib.org.
B. Ruijl, Symbolica, https://symbolica.io/.
N. Arkani-Hamed et al., Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press (2016) [https://doi.org/10.1017/CBO9781316091548] [INSPIRE].
Z. Bern et al., Logarithmic Singularities and Maximally Supersymmetric Amplitudes, JHEP 06 (2015) 202 [arXiv:1412.8584] [INSPIRE].
P. Wasser, Scattering Amplitudes and Logarithmic Differential Forms, Ph.D. thesis, Mainz U., Johannes Gutenberg-Universität Mainz, Germany (2022) [INSPIRE].
P.A. Baikov, Explicit solutions of the three loop vacuum integral recurrence relations, Phys. Lett. B 385 (1996) 404 [hep-ph/9603267] [INSPIRE].
P.A. Baikov, A practical criterion of irreducibility of multi-loop Feynman integrals, Phys. Lett. B 634 (2006) 325 [hep-ph/0507053] [INSPIRE].
C. Dlapa, Algorithms and techniques for finding canonical differential equations of Feynman integrals, Ph.D. thesis, Munich U., Germany (2022) [INSPIRE].
J. Bosma, Aspects of amplitudes: Feynman integrals in the Baikov parameterisation, and exact superconformal symmetry in N = 4 super Yang–Mills theory, Ph.D. thesis, Zurich, ETH, Switzerland (2022) [INSPIRE].
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar Scattering Amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].
H. Frellesvig and C.G. Papadopoulos, Cuts of Feynman Integrals in Baikov representation, JHEP 04 (2017) 083 [arXiv:1701.07356] [INSPIRE].
J. Broedel et al., Elliptic Feynman integrals and pure functions, JHEP 01 (2019) 023 [arXiv:1809.10698] [INSPIRE].
S. Weinzierl, Feynman Integrals, arXiv:2201.03593 [https://doi.org/10.1007/978-3-030-99558-4] [INSPIRE].
J.L. Bourjaily et al., Elliptic, Yangian-Invariant “Leading Singularity”, Phys. Rev. Lett. 126 (2021) 201601 [arXiv:2012.14438] [INSPIRE].
J.L. Bourjaily, N. Kalyanapuram, C. Langer and K. Patatoukos, Prescriptive unitarity with elliptic leading singularities, Phys. Rev. D 104 (2021) 125009 [arXiv:2102.02210] [INSPIRE].
C. Meyer, Transforming differential equations of multi-loop Feynman integrals into canonical form, JHEP 04 (2017) 006 [arXiv:1611.01087] [INSPIRE].
C. Meyer, Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA, Comput. Phys. Commun. 222 (2018) 295 [arXiv:1705.06252] [INSPIRE].
C. Meyer, Algorithmic transformation of multi-loop Feynman integrals to a canonical basis, Other thesis, Humboldt U., Berlin, Germany (2018) [arXiv:1802.02419] [INSPIRE].
R.N. Lee, Reducing differential equations for multiloop master integrals, JHEP 04 (2015) 108 [arXiv:1411.0911] [INSPIRE].
R.N. Lee, Libra: A package for transformation of differential systems for multiloop integrals, Comput. Phys. Commun. 267 (2021) 108058 [arXiv:2012.00279] [INSPIRE].
R.H. Lewis, Fermat: A computer algebra system for polynomial and matrix computation, https://home.bway.net/lewis/.
K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83 (1977) 831 [INSPIRE].
L. Lewin, Polylogarithms and associated functions, North-Holland Publishing (1981).
J. Zhao, Motivic complexes of weight three and pairs of simplices in projective 3-space, Adv. Math. 161 (2001) 141.
J. Zhao, Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values, Series on Number Theory and its Applications, vol. 12, World Scientific (2015) [https://doi.org/10.1142/9634].
J. Zhao, Multiple Polylogarithms (MPLs), in Polylogarithms as a Bridge between Number Theory and Particle Physics, https://www.maths.dur.ac.uk/lms/098/talks/0198zhao.pdf, https://www.maths.dur.ac.uk/lms/098/abstracts.html.
C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].
H. Frellesvig, D. Tommasini and C. Wever, On the reduction of generalized polylogarithms to Lin and Li2,2 and on the evaluation thereof, JHEP 03 (2016) 189 [arXiv:1601.02649] [INSPIRE].
A.V. Smirnov, N.D. Shapurov and L.I. Vysotsky, FIESTA5: Numerical high-performance Feynman integral evaluation, Comput. Phys. Commun. 277 (2022) 108386 [arXiv:2110.11660] [INSPIRE].
C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput. 33 (2002) 1 [cs/0004015] [INSPIRE].
C. Duhr and F. Dulat, PolyLogTools — polylogs for the masses, JHEP 08 (2019) 135 [arXiv:1904.07279] [INSPIRE].
H.R.P. Ferguson, D.H. Bailey and S. Arno, Analysis of PSLQ, an integer relation finding algorithm, Math. Comput. 68 (1999) 351.
A.V. Belitsky, L.V. Bork, J.M. Grumski-Flores and V.A. Smirnov, Three-leg form factor on Coulomb branch, arXiv:2402.18475 [INSPIRE].
B. Basso and A.G. Tumanov, Wilson loop duality and OPE for super form factors of half-BPS operators, JHEP 02 (2024) 022 [arXiv:2308.08432] [INSPIRE].
Acknowledgments
We are deeply indebted to Roman Lee and Alexander Smirnov for their generous help at various stages of this project. The work of A.B. was supported by the U.S. National Science Foundation under grant No. PHY-2207138. The work of V.S. was supported by the Russian Science Foundation under the agreement No. 21-71-30003 (IBP reduction with rational reconstruction) and by the Ministry of Education and Science of the Russian Federation as part of the program of the Moscow Center for Fundamental and Applied Mathematics under Agreement No. 075-15-2022-284 (solving differential equations with asymptotically canonical bases).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2312.00641
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Belitsky, A.V., Smirnov, V.A. Near mass-shell double boxes. J. High Energ. Phys. 2024, 155 (2024). https://doi.org/10.1007/JHEP05(2024)155
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2024)155