Skip to main content
Log in

Critical points and number of master integrals

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the question about the number of master integrals for a multiloop Feynman diagram. We show that, for a given set of denominators, this number is totally determined by the critical points of the polynomials entering either of the two representations: the parametric representation and the Baikov representation. In particular, for the parametric representation the corresponding polynomial is just the sum of Symanzik polynomials. The relevant topological invariant is the sum of the Milnor numbers of the proper critical points. We present a Mathematica package Mint to automatize the counting of the master integrals for the typical case, when all critical points are isolated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Chetyrkin and F. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

    Article  ADS  Google Scholar 

  2. F. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Smirnov, Algorithm FIRE - Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].

    Article  ADS  Google Scholar 

  4. A. von Manteuffel and C. Studerus, Reduze 2 - Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE].

  5. C. Studerus, Reduze-Feynman Integral Reduction in C++, Comput. Phys. Commun. 181 (2010) 1293 [arXiv:0912.2546] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. R. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].

  7. A. Adolphson and S. Sperber, On twisted de Rham cohomology, Nagoya Math. J. 146 (1997) 55.

    MathSciNet  MATH  Google Scholar 

  8. A. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Inv. Math. 32 (1976) 1.

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Fedoryuk, The Method of Steepest Descent (in Russian), Nauka, Moscow (1977).

    Google Scholar 

  10. F. Pham, Vanishing homologies and the n variable saddlepoint method, in Singularities: Proceedings of the Summer Institute on Singularities, Humboldt, California, 1981 (1983).

  11. F. Pham, La descente des cols par les onglets de Lefschetz, avec vues sur Gauss- Manin, in Systèmes différentiels et singularités, Colloq. Luminy/France 1983, Astérisque 130 (1985).

  12. A. Smirnov and A. Petukhov, The Number of Master Integrals is Finite, Lett. Math. Phys. 97 (2011) 37 [arXiv:1004.4199] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. S. Lefschetz, Lanalysis situs et la géométrie algébrique, Gauthier-Villars, Paris France (1924).

    MATH  Google Scholar 

  14. E. Witten, Analytic Continuation Of Chern-Simons Theory, arXiv:1001.2933 [INSPIRE].

  15. V. Arnold, S. Gusein-Zade and A. Varchenko, Singularities of differentiable maps. Volume II: Monodromy and Asymptotics of Integrals, Birkhäuser (1988).

  16. M. Marcolli, Motivic renormalization and singularities, in Quanta of maths. Conference on non commutative geometry in honor of Alain Connes, Paris, France, March 29-April 6, 2007, pp. 409-458.

  17. M. Marcolli, Feynman Motives, World Scientific, Singapore (2010).

    MATH  Google Scholar 

  18. P. Baikov, Explicit solutions of the multiloop integral recurrence relations and its application, Nucl. Instrum. Meth. A 389 (1997) 347 [hep-ph/9611449] [INSPIRE].

    Article  ADS  Google Scholar 

  19. R. Lee, Calculating multiloop integrals using dimensional recurrence relation and D-analyticity, Nucl. Phys. Proc. Suppl. 205-206 (2010) 135 [arXiv:1007.2256] [INSPIRE].

    Article  ADS  Google Scholar 

  20. P. Baikov, A Practical criterion of irreducibility of multi-loop Feynman integrals, Phys. Lett. B 634 (2006) 325 [hep-ph/0507053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. The Mint package can be downloaded from http://www.inp.nsk.su/~lee/programs/LiteRed/#utils.

  22. W. Stein et al., Sage Mathematics Software (Version 5.11), The Sage Development Team, 2013, http://www.sagemath.org.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman N. Lee.

Additional information

ArXiv ePrint: 1308.6676

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, R.N., Pomeransky, A.A. Critical points and number of master integrals. J. High Energ. Phys. 2013, 165 (2013). https://doi.org/10.1007/JHEP11(2013)165

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)165

Keywords

Navigation