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ABSTRACT: Two-loop multi-leg form factors in off-shell kinematics require knowledge of planar
and nonplanar double box Feynman diagrams with massless internal propagators. These
are complicated functions of Mandelstam variables and external particle virtualities. The
latter serve as regulators of infrared divergences, thus making these observables finite in four
space-time dimensions. In this paper, we use the method of canonical differential equations
for the calculation of (non)planar double box integrals in the near mass-shell kinematical
regime, i.e., where virtualities of external particles are much smaller than the Mandelstam
variables involved. We deduce a basis of master integrals with uniform transcendental weight
based on the analysis of leading singularities employing the Baikov representation as well as
an array of complementary techniques. We dub the former asymptotically canonical since
it is valid in the near mass-shell limit of interest. We iteratively solve resulting differential
equations up to weight four in terms of multiple polylogarithms.
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1 Introduction

The infrared structure of off-shell observables in massless gauge theories attracted attention
in the past couple of years. Within the context of the maximally supersymmetric Yang-Mills
theory (aka N =4 sYM) this kinematical regime can be addressed in a fully gauge-invariant
fashion by studying the theory on its Coulomb branch [1]. With a proper choice of vacuum
expectation values for the model’s scalar fields, one can mimic the off-shellness of the unbroken
gauge symmetry phase with nonvanishing masses for external particles only, while keeping
all states propagating in internal lines of Feynman graphs massless. This regime is of
phenomenological interest in physical theories like QCD. As opposed to the fully massless
case where infrared singularities arise as poles in the dimensional regularization parameter
e = (4 — D)/2, in the nearly mass-shell regime of virtual amplitudes, they are replaced by
the logarithms of external states’ virtualities. An orthodox universality of infrared physics
would suggest that critical exponents in both cases will be given by the very same function
of the Yang-Mills coupling constant. However, recently this was demonstrated to be far
from the truth [2-5].

Four- [2] and five-leg [3] scattering amplitudes as well as two-particle form factors [4, 5]
were the first few examples to exhibit a novel feature of the near mass-shell kinematics as
opposed to the fully massless regime. While the infrared physics in the latter was known, since
the inception of QCD [6], to be governed by the cusp anomalous dimension [7, 8] the former
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Figure 1. Planar and non-planar double box graphs in the left and right panels, respectively.

involved a different function of the coupling, the so-called octagon anomalous dimension [9-11].
To further elucidate its role, one needs to address more complicated observables containing
more scales. They are of interest for several reasons. First, it is desirable to test the infrared
factorization and off-shell universality in circumstances that involve multiple scales at the
same time. Second, for near mass-shell scattering amplitudes with more than five legs and
form factors with more than two, there is a residual finite contribution free from infrared
logarithms but depending on Mandelstam-like variables. These are known as remainder
functions. A natural question arises whether they are the same both in on- and off-shell
regimes. Given that the critical exponents are different, one would expect them to differ
as well. But one needs explicit verifications.

Remainder functions in the massless case of planar N' = 4 sYM are endowed with a stringy
description [12, 13] in terms of an effective two-dimensional world-sheet [14, 15]. The string
in question is the so-called GKP string [16] with its energy density determined by the cusp
anomalous dimension. The string supports a set of elementary excitations of a T-dual theory,
with their dispersion relations and scattering matrices known exactly in 't Hooft coupling
constant [17]. One may wonder then, given the vacuum of off-shell observables is determined
by the octagon anomalous dimension, whether the spectrum of excitations that live on it and
their interactions remain the same as on the GKP background. This is a long-term goal. On
the way toward it, one needs ‘experimental’ data from explicit field theoretical calculations
to confirm or deny this expectation. The first step will be undertaken in this paper.

In this work, we calculate Feynman integrals of double box families, see figure 1, relevant
for the problem of three-leg form factors (p1, p2, p3|O(q)|0) at two-loop perturbative order.
As we advocated above, we are particularly interested in the kinematical situation where the
off-shellness of external particles with momenta py (¢ = 1,2,3) are equal and small compared
to the virtuality ¢® associated with the operator O, — the lowest super-component of the
stress-tensor multiplet. To this end, we will rely on the method of differential equations [18, 19]
in its modern-day incarnation that employs canonical bases [20]. To date, this is the most
powerful and efficient technique to tackle multi-scale Feynman integrals. Recently, it was
successfully applied to the planar double box integrals (left panel in figure 1) with three [22]
and four [23] external squared momenta being off the light cone and all internal lines being
massless. A basis of uniformly transcendental (UT) integrals was established and its symbol
alphabet was analyzed. The latter was shown to be populated by letters expressed in terms
of multiple square roots but no solution to the differential equations was offered. We will



fill in this gap below for our kinematical situation and supplement it with an analysis of
nonplanar graphs as well (right panel in figure 1) which are far more complex. We will
demonstrate that the near mass-shell limit provides sufficient simplification of the structure
of canonical differential equations to offer a solution in terms of multiple polylogarithms [24]
with all square roots gone from their arguments.

Our subsequent presentation is organized as follows. In the next section, we set up the
kinematics and classes of Feynman integrals to be studied both for planar and nonplanar
families. Next, we move on to the construction of canonical bases. We will discuss the two
cases in parallel providing necessary technical details as needed so that a curious reader could
reproduce all results if desired. We start in section 3 by building an initial basis of master
integrals (MIs) making use of the integration-by-parts (IBP) to deduce a primary basis. Then
in section 4, we use leading singularities and a variety of other available techniques to cast
them in the canonical form for the planar case. The nonplanar family is far more complex
and while we manage to build a canonical basis for lower sectors, we encounter elliptic cases
and thus turn to the asymptotic limit in question where these degenerate into poles. The
asymptotically canonical basis for non-planar graphs is presented in section 5. We furnish
solutions to the resulting differential equations and determine corresponding integration
constants in section 6 making use of a variety of criteria that bypass the necessity for explicit
evaluation of parametric integrals. In both situations, explicit results are given up to weight-
four in terms of multiple polylogarithms and they are further recast in terms of classical Euler
polylogarithms and an additional two-argument polylogarithm Lis o at weight-four. Finally,
we conclude and outline directions for future developments. Mathematica notebooks files
published as supplementary material provide the necessary details for the construction and
solution of canonical differential equations for any (non-elliptic) family of Feynman graphs.

2 Setting up conventions

To begin with, let us establish our notations. The kinematics of interest correspond to the
momentum flow from the operator source O(q) to off-shell external particles, obeying the
conservation condition ¢ = p; +p2+p3. We introduce three Mandelstam variables according to

u=—(p1+p2)°, v=—(p2+p3)°, w=—(p3+p)°, (2.1)
which are related by the equation
u+v+w=—q¢+3u. (2.2)

Nevertheless, throughout our subsequent analysis, we will treat u, v, and w as independent
since this provides stringent checks on the correctness of our derivations. Above, we introduced
equal Euclidean virtualities for all particle legs p; = —pu. Since the overall scale of a Feynman
integral can be always unambiguously restored on dimensional grounds, we will set ¢ = —1
in what follows.

The families of graphs that take centre stage in this paper are shown in figure 1. Even
though Feynman integrals contributing to physical observables are finite for nonvanishing
off-shellness, nevertheless, we will work with a dimensionally regularized theory to be able to



apply IBP reduction which requires a D-dimensional setup to render bases of sought-after
MIs complete. We work in conventions of ref. [21]. The two-loop non- and planar integrals

dPky dPky P - —a;
2 1 2 a
are determined by a set of massless propagators 1/D; (for j =2,...,7) and two irreducible

scalar products Dg g defined according to the momentum flow exhibited in figure 1 as

Dy = —(k1 +p1+p2)?, D3=—(ki+q)?, Dy =—(k1 —ko)*, Ds=—k3, (24)
Dg = —(ka +p1)?, D7 = —(ky +p1 +p2)*, Dg=—(k1+p1)?, Dg=—(k2+q)?,

with the remaining denominator
Dy =—k?,  and Dy = —(k; — ko +q)* (2.5)

corresponding to the planar and non-planar cases, respectively. All indices a; are integers
with agg < 0. Let us turn to these two families one by one.

3 Primary basis of MIs and differential equations

Let us begin with the planar graph as a case study. Bases of integrals defining it were
previously addressed in refs. [22, 23], however, we will use this more familiar family to
set up our formalism so that we can be more concise in our following presentation of the
non-planar graph, which is computationally more demanding but does not bring anything
new to the table to a certain degree.

Preliminary counting of MIs can be done with a variety of available tools, say with
Mint [25] or the modular component of FIRE [26], which was the go-to tool in our analysis.
Constructing a list of integrals in the top, i.e., level-seven sector, obtained by inequivalent
permutations of two indices equal to two G221111100, We prepare start files and generate
symmetry relations with LiteRed [27, 28]. A modular arithmetic IBP then yields an initial
set of 74 Mls. We give preference to Laporta-reducible values of indices being equal to 2 since
experience with canonical bases has taught us that these more likely than not be endowed
with single leading singularities and thus serve as UT candidates. Next, we use FindRules
command of FIRE to deduce 10 symmetry equations between MIs in our preferential basis,
thus reducing their number to 64. However, this is not the end of the story. We can further
determine ‘hidden’ relations as well. To accomplish this, we create lists of integrals sufficiently
close to the preliminary set and containing these as a subset: it includes integrals with
none, one, and two indices set to 2. Then an IBP reduction reveals additional two relations
among them reducing their total number to 62. At this step, it is always advisable to verify
that thus obtained basis does not yield the so-called ‘bad’ denominators according to the
nomenclature of ref. [21]. In fact, we find none. But at level five, IBP yields quite lengthy
denominator polynomials in the Mandelstam variables and the off-shellness and these can be
traded however for significantly more compact ones. This provides us with a solid starting



set of 62 preliminary Mls I for our subsequent analytical analysis which we will use from
now on as the option #masters for IBP reduction with FIRE. These read

I={Go01101000, G0o1110000, G010110000; G100101000, Goo1110100, Go01110200, Goo1111000, G001112000-
G011011000, G011101000, G011102000, Go111100005, G011120000, G1001011005 G100101200, G101010100,
(101011000, G1011001005 G'101100200, G1011010005, G'101102000, G1100101005 G110011000, G110101000;
G'110102000, Goo2111100, Goo2211100, Go11011100, Go11101100, Go11110100, Go11111000, Go11112000,
Go11121000, Go11211000, Go12111000, G012121000, Go12211000, G202011100, G101101100, G101101200,
G'101102100, G101201100, G101201200, G'102102100, G102201100, G1021101005 G'102211000, G110011100,
G'110111000, G111010100, G1110110005 G111102000, G111202000, Go11111100, G101111100, G111011100,

G111101100, G111111000, G1111111005 G111111200, G111211100, G112111100 ) - (3.1)

All of the above steps are presented in sections 1 through 10 of the attached Mathematica
notebook A2Zdbox.nb and the output is saved in the subdirectory dbox. An analysis identical
to the one just discussed is performed then for the non-planar family to give us a set of
97 primary MlIs I

I'={Go001101000, G0o1110000, G010110000, G101001000, G'110001000, Goo1110100, Goo1110200, Goo1111000;
G001112000, G011010100, G0110110005 G011101000, Go11102000, Go11110000, Go111200005 G100110100,
G'101001100, G1010012005 G101100100, G1011002005 G'101101000, G1011020005 G'110001100, G110001200,
(110101000, G110102000, G1110010005, G'111002000, G111100000, Goo1111100, Goo1111200, Go11011100,
Go11101100, Go11110100, Go11111000, Go11112000, Go11113000, Go11121000, Go11211000, Go12111000,
G021111000, G200211100, G1011011005 G'101101200, G101101300, G101102100, G1012011005, G102101100,
G'201101100, G101110100, G1011110005 G'110011100, G110011200, G1101011005 G1101110005 G110112000,
G'110113000, G110121000, G110211000, G120111000, G210111000, G1110011005 G111001200, G111001300,
G'111002100, G112001100, G1210011005 G211001100, G111011000, G1111001005 G'1111010005 G111102000,
G'111103000, G112101000, G121101000, G211101000, G221101000, Go11111100, G101111100, G110111100,
G'111011100, G111101100, G1111012005 G111102100, G111201100, G1121011005 G'1211011005, G111110100,

G111111000, G111112000, G111121000, G111211000, G112111000, G211111000; G111111100, G111111200,
G1i1112100 - (3.2)

These are stored in the subdirectory nbox.

After these preparatory studies, we move on to the construction of the derivatives in
the Mandelstam variables and the off-shellness by performing differentiations with LiteRed.
The differential dI = du 0,1 + dv 0,1 + dw 01 + dpn 0,1 then needs to be IBP-reduced back
to the MIs I thus generating the sought-after differential equations

oI =M; I, (3:3)

with ¢ = u, v, w, . While the analytic IBP reduction for the planar family takes a matter
of hours on a typical machine, the non-planar case is far more computationally demanding.
For instance, the reduction of level-seven integrals from the left-hand side of the differential



equations (3.3) given in the accompanying file intsde-nbox2.m down to MIs #3 Go10110000
and #4 Gio1001000 from pr-nbox2.m takes a staggering 7 and 10 days, respectively, on a
typical compute node but with 700 GB of RAM. To cross-check that the resulting tables are
indeed correct, we relied on modular arithmetic runs with FIRE with subsequent balanced
rational reconstruction developed in ref. [29]. With an MPI parallelization of 1024 cores of
ASU’s Sol supercluster [30], the 7 — #3 IBP took 58 hours with Flint [31] and 46 hours
with Symbolica [32] but indeed confirmed our earlier analytical findings. We provide a
detailed account of the derivation in section 11 of the accompanying notebook A2Zdbox.nb
for the planar graph. To ease navigation of the accompanying Mathematica notebooks, the
reader is referred to appendix A for an itemized description of their contents.

4 Canonical basis

Now the main task at hand is to transform the basis of MIs I = T'-J such that the differential
equations (3.3) admit their canonical form

J=cA;-J, eAi=T' M -T-T'. 9T, (4.1)

with each element of the A-matrices being Fuchsian, i.e., possessing simple poles only, and
e-independent [20]. To this end, we need to determine viable UT candidates from our primary
list of MIs. Provided this procedure is successful, a differentiation of these pure UT integrals
will reduce their transcendental weight by one and, thus, the right-hand side of (3.3) will
have to be proportional to €, which carries the transcendentality weight —1. To practically
implement this strategy, we rely on the well-known conjecture that connects uniform weight
integrals with the properties of their integrands, namely, that the singularities of an integrand
are locally of logarithmic type [33, 34], see, e.g., [35] for a comprehensive review.

As the calculation of unitarity cuts is in general downright easier than a solution of
integrals per se, the idea is to use the former for the identification of Feynman integrals that
correspond to pure functions. To perform multidimensional unitarity cuts efficiently, one
has to rely on an appropriate parametrization. Since Feynman integrals possess integrands
which are rational functions of propagators and ISPs, it is only natural to choose these
as integration parameters z; = D;. To date, this is the most concise framework which is
known as the Baikov representation [36, 37], see refs. [38, 39] for comprehensive reviews.
This form of integrals trivializes the computation of unitarity cuts. The so-called leading
singularities correspond to taking the maximal cut, i.e., successive residues in all z; = 0,
followed by residues in composite singularities emerging along the way from any Jacobian
factors [40]. This completely localizes all integrations and provides a function of external
kinematical variables, which once being divided out from the Feynman integral in question
yields a pure UT candidate with constant leading singularity. Of course, for a given integral,
there could be multiple ways to localize all integrations depending on the order of taking
residues and this can yield different leading singularities. Only integrals with a single leading
singularity can be autonomously recast as UT, while in cases where there is more that one,
linear combinations of these have to be studied as well. It is important to realize that UT
candidates found this way may not correspond to MlIs of the traditional Laporta algorithm.



This is the reason why we chose from the very beginning to favor MlIs having indices equal
to 2 in our IBP studies. Leading singularities analysis completely fixes the diagonal blocks
of the A-matrices, which do not mix MIs at different levels. Then we move on to study
sub-maximal cuts to find corrections from lower-level subsectors.

In our analysis, we relied on the Mathematica implementation of the Baikov parametriza-
tion via Baikov.m package developed in ref. [41]. We provide thorough details of it use in
section 12 of the accompanying Mathematica notebook A2Zdbox.nb for a subsector of the
planar double box integral as described in appendix A.1. This is followed by an iterative
construction of the canonical basis of Mls starting from the lowest sector and going up. The
essence of the method consists of finding leading singularities of primary MIs and factoring
them out (sometimes in linear combinations) to construct potential candidates of UT MIs.
These are then used for IBP reductions to verify whether they are indeed UT. Since a more
general case was already studied in the literature [23], we provide only sporadic details for
the latter in sections 13-14 of the same supplementary material file with final results for
the canonical basis and all A-matrices given in dboxCan62.m and AuPC.m, AvPC.m, AwPC.m,
AmPC.m, respectively.

5 Asymptotically canonical basis

The Baikov representation analysis akin to the one used above immediately convinces us that
the non-planar graph (right panel in figure 1) possesses elliptic sectors [42], see ref. [43] for a
thorough review, implying that some leading singularities reside on elliptic curves [44, 45]
rather being merely algebraic. However, they smoothly degenerate into the latter as we send
the off-shellness p down to zero since the ends of branch cuts collide and reduce to poles.
Since at the end of the day, all we are after is the asymptotic behavior of our Mls as y — 0
up to terms that vanish in p, we can implement this limit on differential equations for the
primary set of 97 Mls and then construct what we call as the asymptotically canonical basis.
The latter solves the singular limit of the off-shellness equation but treats all variables exactly.
This will become transparent from the discussion that follows.

Thus, we change the strategy for basis construction in the non-planar case. Namely, we
tend to assume generic values for all variables (u, v, w as well as u) as long as we encounter
only algebraic leading singularities and swiftly pass to the asymptotic consideration when it is
no longer the case. The Baikov representation is again used for this purpose. In elliptic sectors
uncovered via this procedure, we do not attempt the construction of UT elements. Instead,
we go back to their differential equations and expand/solve them to the leading order in the
off-shellness . In particular, this occurs in the two level-six sectors G111101100 and G111111000,
and the top level-seven sector G111111100- For these, we require the following properties to be
fulfilled by the differential equations: (i) the off-shellness matrix M, can be cast in the form

M, — A, = %Ag + 0", (5.1)

with A2 being a matrix of rational numbers, i.e., its elements are strictly independent of
u, v, and wj; (i) M; matrices for the Mandelstam variables i = (u,v,w) have well-defined
finite limit as p — 0 and do not possess elements with square roots; (iii) last but not least,



resulting differential equations in u, v, and w are canonical or can be made canonical with
an appropriate similarity transformation.

As usual, we focus on diagonal blocks first but use now the leading order form of the
elements of the matrices M; (with i = u,v,w, u) as p goes to zero for a proper choice of
asymptotically canonical elements. It is easier to demonstrate it with an example of the
G111101100 sector. The primary set of MlIs defining this sector is

{G111101100, G111101200 > Gi11102100, Gi11201100 , G112101100, Gi21101100} - (5.2)

To start with we utilize the form of M, = Mg/u + O(u), with Mg being a function of
u,v,w and &, to conclude that if we are to multiply the elements 2,3,5,6 with u, after a
similarity transformation the off-shellness matrix will take the required form (5.1). We know
a priori, however, that the e-dependence of this seed basis will have to be adjusted later since,
as rule of thumb, one associates e* with MIs without any twos and £2~" for MIs with n twos
in the first 7 positions. For now, it will do the job, however. Next, we change the basis by
multiplying each element in it with an unknown function of the Mandelstam variables

G — flu,v,w)G. (5.3)

Enforcing the e-form on the resulting differential equations for this new basis, we solve the
arising differential equations on the functions f(u,v,w) and get, after a gentle mixture of
elements with each other and re-arrangement,

{po(u+ v +w)?/(u 4+ v)G111101200, 0[wG111102100 + (U + v + w)G111101200),
MU[UG112101100 + (u + v+ w)G121101100], ,uv(u + v+ w)2/(v + w)G121101100a
5G111101100, f6Gi11201100} - (5.4)

The last two elements of this naive basis contain square roots of Mandelstam variables in
functions f56. This is hardly a surprise since we completely ignored up to now the correct
e-dependence of the basis elements which resulted in erroneous differential equations for
f5,6- 1If we do it in a proper manner, we observe a violation of the canonical form of the
differential equations in u, v, and w. Details on this calculation can be found in section 1
of the accompanying Mathematica notebook AsyClevel6.nb.

The above finding instructs us to look further for a better choice of elements 5 and 6
of this sector. The method of trial and error is quite tedious and exhausting, so we turn
to the massless non-planar double box for inspiration. In the strict limit g — 0, the first
four elements if (5.4) vanish and one is left with just two elements. The massless non-planar
box analysis demonstrates that indeed it possesses two level-six sectors with one of them
containing two primary elements G111101100 and G111101200- Construction of the canonical
basis in this sector is performed in section 2 of the notebook AsyClevel6.nb and offers two
options for UT elements, namely,

{v(u + v+ w)Grit101100, (v +w)Grit1011-10} 5 (5.5)

or

{v(u+v+w)Gii1o1100, (w4 v)Giit10110-1} - (5.6)



We then build upon (5.5) to lift the analysis to the off-shell case in the asymptotic limit and
construct the final form of the diagonal block of this sector in section 3 of AsyClevel6.nb
such that the last two elements in eq. (5.4) are replaced with

(14 4e)ev(u + v + w)Giiio1100 (5.7)
+ euv(u + v+ w)/(u + ’U)[wGHHleOO — (u + v+ w>G111101200]
+ 6,LL’U(U + v+ w)/(v + U/)[UG112101100 — (u + v+ w)G121101100]

and

(1 +4e)e(v 4+ w)Gr111011-10 (5-8)

1
+ ZSMU/(U + w)[u(2u + 5v 4+ 5w)G1i2101100 — (v + v 4+ w)(2u + v + w)G121101100] 5

respectively, and we simultaneously restored a proper relative e-normalization of these
elements. All other sectors can be analyzed in the same fashion.

Though all diagonal sectors were brought by us to the e-form, not all elements of the
A-matrices are Fuchsian. Moreover, the off-diagonal blocks are not even close to the required
e-form. However, their transformation to the canonical form is now purely algorithmic. The
Fuchsian form is easily obtained by making use of the code Canonica.m [46-48]. The latter
cannot handle, however, the transformation of all off-diagonal elements in the differential
equations to the e-form using Lee’s trick [49]. The latter is implemented in a powerful package
Libra.m [50], which calls for an external Fermat [51] computer algebra system, though it
works just as fine! even with built-in Mathematica commands. This systematic procedure is
demonstrated step-by-step in the supplementary material notebook file AsyCnbox.nb proving
the output in the file nboxAsyCan97.m in the Canonica format. This culminates our quest
to reach the asymptotically canonical basis in the non-planar case.

6 Integration and determination of integration constants

To summarize, in the previous section we determined the asymptotically canonical form of
the differential equation with the one in the off-shellness p being

€ 40
Oud = ;A“J’ (6.1)
up to terms vanishing as y — 0, with Ag being a purely numerical matrix. Solving this
leading order equation is simple and it provides a transformation

J(u, v, w, 1) = ;ng ~Jo(u,v,w), (6.2)

to the p-independent basis Jgy via a matrix exponent whose entries are expressed as linear

—ne

combinations of p~"*-terms accompanied by rational number coefficients. The basis Jg solves

in turn the asymptotically canonical equations

0iJg =A%, with i = (u,v,w), (6.3)

!Though ten times slower.



where the elements of A = A;|,—o are expressed in terms of rational functions of the
Mandelstam invariants u, v and w only.

The main advantage of the canonical form of differential equations (6.3) is that their
solution can be written in terms of a path-ordered exponential and explicitly calculated
via Chen’s iterative integrals theory [52],

JO = P’Y exp (5/ AO> J()[), (64)
Y

where A = duA? + dvAY + dwA? and Jg is a vector of integration constants. At each
order in the e-expansion it receives an independent set of unknowns
Jo() = Z &‘pC(p) . (6.5)
p=0
The solution (6.4) is independent of the choice of the path v since the integrability of the
differential equations is a zero-curvature condition, dA? —cA° A A® = 0. In our analysis,
we chose a piece-wise path

v =1[0,4] U[0,0] U[0,w]. (6.6)

In more practical terms, we take the first equation with ¢ = v in (6.3) and solve it with respect
to u. Then we turn to the v-variable. To eliminate the u-dependence from the differential
equation, we form a difference between the right-hand side of (6.3) for i« = v and the derivative
in v of the solution found in the previous step. We then find its primitive in v. Finally, we
repeat the procedure for w. This procedure is cast in a Mathematica module Integrator
in the attached notebook AsySolCnbox.nb. The result is then given in terms of multiple
polylogarithms (MPLs) [24]. The latter are defined recursively via an integral iteration, e.g.,

v,
G(ap,a;u) = dulm :
[0,u] u — ag

However, in order to have a better handle on the analytical structure of our results, we recast
them in terms of classical Euler polylogarithms? whenever possible. It is well known that
for the weight up to three, all MPLs can be traded to Li,’s, see, e.g., [53-55] (Chapter 2
on MPLs of the latter reference is available at [56]). At weight four, one needs to include
an additional two variable MPL Liz s to the minimal basis of classical polylogarithms as
was observed in ref. [57]. This basis transformation was worked out and is conveniently
implemented into the routine gtolrules.m devised in ref. [58]. We need to make sure that a
proper ‘branch’ of MPLs is taken into account at a given point in the (u,v,w)-space since
a single expression in terms of Li,’s and Liz 2 is not sufficient to cover the entire space of
(complexified) Mandelstam variables.

At each p-order of the e-expansion, arrays of integration constants ¢) have to be
determined from a set of boundary conditions. However, we would like to avoid an explicit
calculation of any Feynman integrals since, even in some corners of the phase space, they
are very complex and, which is worse, quite numerous. Instead, we relied on several criteria
to fix them such as (i) numerology, (ii) cancellation of unphysical poles, (iii) absence of
imaginary parts, and (iv) finite integrals.

2These are readily encoded in Mathematica.
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(i)

(iii)

The first condition is self-explanatory. Using the fact that our asymptotically canonical
MIs obey the property of being UT, we cast the integration constants into a product
of rational numbers times values of the Riemann zeta function ¢, = ((p) of the same
transcendental weight,

c?) =g, (6.7)

with the employed convention (5 = 1 and {; = 0 for the first two values of p. Then,
computing the MIs at a random point for the Mandelstam variables with FIESTA [59],
we confronted its results against the numerical evaluation of our solutions. In this
manner, we managed to confidently determine 84 rj(«p ) for p=20,2, 81 r](~3)’s and 79
rj(~4)’s. The monotonically decreasing number of rationally reconstructed constants with
increasing p is related to the loss of FIESTA’s numerical precision and emergence of

large rationals at higher orders in ¢.

To alleviate the aforementioned problem and cross check correctness of previous nu-
merological findings, we employed conditions for unphysical pole cancellation in the
right-hand side of the canonical differential equations, namely, at u +v =0, v+ w =0
and w + v = 0. Then, decomposing the A-matrices in explicitly Fuchsian form

? @iyt 4 Q; y+w + @i w+u + .. (6.8)
u+v v+ w w—+u

we imposed the following equations on our basis
ai7aJ0\a:0 =0. (69)

These provided a further set of 10,7,9 and 10 identifications/relations between integration
constants at levels p = 0,2, 3 and 4, respectively.

To further constrain the integration constants at order p, we used solutions at order p+1
and required the vanishing of imaginary parts as one approaches unphysical poles in
eqgs. (6.9). This provided the value on the last ré%) element from the solution at order £%.
The solution at fifth order in € was used in conjunction with high-precision numerical
computations of MPLs with the C++ package GiNaC [60] making use of a Mathematica
interface from ref. [61] and subsequent reconstruction of analytical expressions with the
PSLQ algorithm [62]. This allowed us to deduce 3 equations for r](-4) (j = 86,92,97).

The implementation of the above three conditions fixed all but 3,6,7 and 8 integration
constants for p = 0, 2,3 and 4, correspondingly. Then, by a judicious choice, we found
a set of 26 finite (in €) integrals

Go11111100 5 G101111100 5 G110111100 5 G1io111005,  Giiiiio100,
G111111000 5 Giii-10,  Guio-1,  Giieo,  Grinnn-i-1,
Go11101100 5 Go11110100 5 Go11111000 5 G1o11o11005,  Ghoti1o100,
G'101111000 5 G'110101100 5 G'110111000 5 G111001100,  G111011000 5
G111100100 5 G111101000 5 Gii1i011-105,  Giittoto0,  Giiiiiio-10s
G11111100-1 5 (6.10)
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which were reduced with IBP identities to our set of 97 MIs. The resulting relations
are divergent and pole cancellation in the Laurent e-expansion provided an ultimate
set of equations to completely fix the solutions at orders one through three. In fourth
order, we obtained the last five integration constants whose numerical value to O(1073)
were determined to be

i) = 1515.669, r) = 26.958, r{d) = —50645.784, r{Y) = 6.659, ris) = —576.338.
(6.11)

To rationalize these, one has to either perform an analytic calculation of a very large set
of Feynman integrals or increase the accuracy of their numerical evaluation to twelve
decimal places with FIESTA or any other program. Currently, alas, this is beyond our
reach. However, a particular combination of these constants shows up in the three-leg
form factor [63], which allows us to eliminate one of them from the above list. It reads

12~ "8 T 950 T TG 8 236544

4 4 4 4
s oo o | rhy 62683849 (6.12)

All steps of the above analysis for the non-planar family are thoroughly presented in
the accompanying Mathematica notebook AsySolCnbox.nb. For the planar graph, it suffices
to use just the first two conditions (i) and (ii). All solutions up to the same order in ¢ are
quoted in the supplementary material file AsySolCdbox.nb.

7 Conclusions

With this paper, we initiate a series of studies of multi-scale two-loop observables in N = 4
sYM. Currently, we constructed bases of UT MIs for double box planar and non-planar
graphs in the kinematical limit of small virtualities of three external particles and an arbitrary
invariant mass for the last leg. This is a preparatory study for a full-fledged analysis of
the three-leg form factor of the stress tensor multiplet to be published separately [63]. The
bases in question were used to determine the canonical form of differential equations in the
Mandelstam variables u, v, w as well as the off-shellness p. Solutions to these equations
were constructed up to terms vanishing as p — 0. The results for all master integrals were
obtained as a double Laurent/Taylor expansion in €/log u up to (and including) weight four
contributions. All integration constants were successfully fixed analytically with the exception
of 5 coefficients at level four where they were found numerically with the accuracy 1073.
Future more precise numerical studies with FIESTA could potentially fix them unambiguously
as rational coefficients accompanying the value of (4.

Consideration performed in this work will be generalized in several avenues. From the
point of view of identifying two-dimensional integrable physics of the octagon flux-tube, form
factors of super-descendants of the stress-tensor multiplet could provide simpler circumstances
for its elucidation since they are sensitive to contribution from single charged flux-tube
excitations [64] as opposed to singlet pairs determining the lowest half-BPS operator [15].
So far the limitation to form factor observables was solely driven by a lower multiplicity
requirement on the number of external legs in a graph to attain a non-trivial remainder
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function. It is well-known that in the case of scattering amplitudes, nontrivial remainder
functions emerge starting from six legs. Thus, it is important to analyze these in the near
mass-shell kinematics introduced in this paper and compare them both functionally as well
as from the microscopic stringy point of view.

Regarding the development of computational techniques of multi-loop Feynman integrals
per se, we are currently capable of breaking free from the simplifying assumption of the
near mass-shell limit and uplifting our asymptotically canonical basis for the non-planar
graph to the situation of arbitrary virtualities. The solution to the resulting equations is
a very different issue though.
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A Summary of Mathematica notebooks

To make our presentation self-contained, the Arxiv submission of this paper is accompanied
by several notebooks. The latter contains all mathematical derivations and results. Let
us briefly summarize their contents.

A.1 A2Zdbox.nb

This notebook describes the derivation of the canonical basis of Mls for the planar graph
in figure 1 (a). In particular,

‘How many MIs to expect from Mint?’ uses the software from ref. [25] to get an estimate
on the expected number of primary MIs.

o ‘Initial list of integrals for IBP’ creates an initial set of integrals with two indices set to
2 for an initial IBP reduction.

o ‘Preparation of the start file’ as a necessary input for FIRE [26] and saving resulting
files in the dbox directory.

o ‘Generation of LiteRed rules’ uses the code from ref. [27, 28] to automatically find
symmetries among primary MIs.

“ IBP reduction for a family of test integrals and search for (74) MIs’ uses the modular
component of FIRE for fast detection of primary MIs.

,13,



o ‘Initial (74) MIs and equivalence rules to reduce them to 64 MIs’ describes how to use
the command FindRules to detect equivalences among some of the integrals and reduce
the number of elements in the initial basis.

o ‘A list of sample integrals [close to 74 MIs found before]” generates lists obtained from
primary MIs by changing (up to two) of their unit indices to two for subsequent use in
finding additional relations among MIs.

¢ ‘Finding additional relations and the list of 62 MIs’ describes IBP reductions of sample
integrals obtained in the previous step to MIs and derivation of additional two relations
among them.

e ‘Analysis of bad denominators and preferential set of integrals’ uses the package from
ref. [21] for the detection of ‘bad’ denominators in IBPs.

o ‘Choosing 62 improved (@ level 5) MIs’ describes the elimination of bad denominator
using a basis transformation.

e ‘Deriving DEs’ demonstrates the use of LiteRed for the derivation of differential
equations for 62 primary MIs in the Mandelstam variables and the off-shellness.

¢ ‘Leading singularities with Baikov and UT: A2Z for the ice cream cone’ provides a
thorough analysis of the ‘ice cream cone’ graph (which represents a subsector for the
double box) making use of the software from ref. [41] for derivation of MIs of uniform
transcendentality (UT).

¢ ‘Finding canonical basis’ gives sample calculations for the derivation of UT MIs and
their complete final list.

e ‘Canonical DEs: matrices and plots’ presents canonical A-matrices for all differential
equations and their sparsity plots for visualization purposes.
A.2 AsySolCdbox.nb

This notebook quotes solutions to the canonical differential equations deduced in A2Zdbox .nb
in the limit u — 0 to order O(u®) and obtained as a Laurent expansion in the parameter
of dimensional regularization ¢ up to finite terms.

A.3 AsyClevel6.nb

Here, we provide a sample derivation of the asymptotically canonical elements for the
non-planar box integral in the level-6 sector {111101100}.

A.4 AsyCnbox.nb

We give level-by-level transformation (split in 14 steps) of the primary set of MIs for the
non-planar box to the asymptotically canonical form by using two public codes Canonica.m
and Libra.m from refs. [46-48] and [50], respectively. The result for the canonical A-matrices
is obtained there as well.
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A.5 AsySolCnbox.nb

The notebook contains detailed solutions of differential equations for the nonplanar box.

In

particular,

¢ ‘Data, routines, substitutions’ folder starts by providing a glossary of the nomenclature
used in the file.

— ‘Numerical results for MlIs and finite integrals from FIESTA’ contains tables
of numerical input values for MlIs for subsequent determination of integration
constants.

— ‘A-matrices and the Integrator’ quotes the A-matrices for differential equations
in Mandelstam variables and provides a routine Integrator for their automatic
integration.

— ‘Lists of polylog substitutions’ gives a comprehensive list of relations among classical
polylogarithms up to level four as well as the MPL Lis 5. These are used in the
rest of the notebook for analytical simplification of integration constants.

— ‘PSLQ’ provides a one-line code making use of the built-in Mathematica command
FindIntegerNullVector.

e ‘Ep”0’ to ‘Ep”5’ describe the step-by-step determination of integration constants of
the Laurent expansion in the parameter of dimensional regularization ¢ at orders from
zero to four based on criteria outlined in section 6 of the main body of this paper.
They contain all numerical cross checks against FIESTA data making use of the GiNaC
integrator [60] implemented in the PolyLogTools.m package [61].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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