Skip to main content
Log in

From polygons and symbols to polylogarithmic functions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a review of the symbol map, a mathematical tool introduced by Goncharov and used by him and collaborators in the context of \( \mathcal{N} \) = 4 SYM for simplifying expressions among multiple polylogarithms, and we recall its main properties. A recipe is given for how to obtain the symbol of a multiple polylogarithm in terms of the combinatorial properties of an associated rooted decorated polygon, and it is indicated how that recipe relates to a similar explicit formula for it previously given by Goncharov. We also outline a systematic approach to constructing a function corresponding to a given symbol, and illustrate it in the particular case of harmonic polylogarithms up to weight four. Furthermore, part of the ambiguity of this process is highlighted by exhibiting a family of non-trivial elements in the kernel of the symbol map for arbitrary weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076].

    Article  MathSciNet  MATH  Google Scholar 

  2. A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059.

  3. S. Bloch, Higher regulators, algebraic K- theory and zeta functions of elliptic curves, Volume 11 of CRM Monograph Series, AMS, Providence, RI, U.S.A. (2000).

  4. A. Beilinson, Polylogarithms and cyclotomic elements, MIT preprint (1989).

  5. D. Zagier, Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields, in G. van der Geer, F. Oort, J. Steenbrink eds., Arithmetic Algebraic Geometry, Prog. Math. 89 Birkhäuser (1991), pg. 391-430.

  6. A. Beilinson and P. Deligne, Interprétation motivique de la conjecture de Zagier reliant polylogarithmes et régulateurs, Proc. Symp. Pure Math. 55 (1994) 97.

    Article  MathSciNet  Google Scholar 

  7. A.B. Goncharov, Geometry of configurations, polylogarithms and motivic cohomology, Adv. Math. 144 (1995) 197.

    Article  MathSciNet  Google Scholar 

  8. A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J. 128 (2005) 209 [math/0208144].

    Article  MathSciNet  MATH  Google Scholar 

  9. J.L. Dupont and C.H. Sah, Scissors Congruences II, J. Pure Appl. Algebra 25 (1982)159.

    Article  MathSciNet  MATH  Google Scholar 

  10. J.L. Cathelineau, Quelques aspects du troisième problème de Hilbert, Gaz. Math. 52 (1992) 45.

    MathSciNet  MATH  Google Scholar 

  11. A.B. Goncharov, Volumes of hyperbolic manifolds and mixed Tate motives, J. Amer. Math. Soc. 12 (1999) 569 [alg-geom/9601021].

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Böhm, Inhaltsmessung in constanter Krümmung, Arch. Math. 11 (1960) 298.

    Article  MATH  Google Scholar 

  13. W.D. Neumann and D. Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Zagier, Hyperbolic manifolds and special values of Dedekind zeta-functions, Invent. Math. 83 (1986)285.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. R. Kellerhals, Volumes in hyperbolic 5-space, Geom. Funct. Anal. 5 (1995) 640.

    Article  MathSciNet  MATH  Google Scholar 

  16. W.D. Neumann and J. Yang, Bloch invariants of hyperbolic 3-manifolds, Duke Math. J. 96 (1999) 29. math/9712224.

    Article  MathSciNet  MATH  Google Scholar 

  17. A.M. Gabrielov, I.M. Gelfand and M.V. Losik, Combinatorial computation of characteristic classes, Funct. Anal. Appl.+ 9 (1975) 5.

    Google Scholar 

  18. D. Zagier, The dilogarithm function in Geometry and Number Theory, in P.E. Cartier, B. Julia and P. Moussa, P. Vanhove eds., Frontiers in number theory, physics, and geometry II, Springer (2007), pg. 3-65

  19. S. Bloch and I. Kriz, Mixed Tate Motives, Ann. Math. 140 (1994) 557.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Gangl and S. Mueller-Stach, Polylogarithmic identities in cubical higher Chow groups, in Algebraic K-Theory. Proceedings of Symposia in Pure Mathematics 67, AMS, Providence, RI, U.S.A (1999) 25.

  21. H. Gangl, A.B. Goncharov and A. Levin, Multiple polylogarithms, polygons, trees and algebraic cycles, in proceedings of Summer Institute in Algebraic Geometry, Seattle, U.S.A. (2005) [Proc. Symp. Pure Math. 80 (2009) 547] [math/0508066].

  22. K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Hain, Classical polylogarithms, in U. Jannsen, S. Kleiman and J.-P. Serre eds., Motives, Proc. Symp. Pure Math. 55 (1994) 3 [alg-geom/9202022].

  24. Z. Wojtkowiak, Mixed Hodge structures and iterated integrals I, in F. Bogomolov and L. Katzarkov eds. Motives, Polylogarithms and Hodge Theory (Part I: Motives and Polylogarithms), Int. Press Lect. Ser. 3 (2002) 121.

  25. E. Remiddi and J. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. T. Gehrmann and E. Remiddi, Two loop master integrals for γ → 3 jets: The Planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J. Ablinger, J. Blumlein and C. Schneider, Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials, J. Math. Phys. 52 (2011) 102301 [arXiv:1105.6063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. J. Vermaseren, A. Vogt and S. Moch, The Third-order QCD corrections to deep-inelastic scattering by photon exchange, Nucl. Phys. B 724 (2005) 3 [hep-ph/0504242] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. S. Moch, J. Vermaseren and A. Vogt, The Longitudinal structure function at the third order, Phys. Lett. B 606 (2005) 123 [hep-ph/0411112] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Vogt, S. Moch and J. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. S. Moch, J. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. R. Bonciani, P. Mastrolia and E. Remiddi, Master integrals for the two loop QCD virtual corrections to the forward backward asymmetry, Nucl. Phys. B 690 (2004) 138 [hep-ph/0311145] [INSPIRE].

    Article  ADS  Google Scholar 

  33. W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia and E. Remiddi, Two-loop QCD corrections to the heavy quark form-factors: The Vector contributions, Nucl. Phys. B 706 (2005) 245 [hep-ph/0406046] [INSPIRE].

    Article  ADS  Google Scholar 

  34. W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia and E. Remiddi, Two-loop QCD corrections to the heavy quark form-factors: Axial vector contributions, Nucl. Phys. B 712 (2005) 229 [hep-ph/0412259] [INSPIRE].

    Article  ADS  Google Scholar 

  35. W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, E. Remiddi, Two-loop QCD corrections to the heavy quark form-factors: Anomaly contributions, Nucl. Phys. B 723 (2005) 91 [hep-ph/0504190] [INSPIRE].

    Article  ADS  Google Scholar 

  36. P. Mastrolia and E. Remiddi, Two loop form-factors in QED, Nucl. Phys. B 664 (2003) 341 [hep-ph/0302162] [INSPIRE].

    Article  ADS  Google Scholar 

  37. R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi and J. van der Bij, Two-loop N (F ) = 1 QED Bhabha scattering: Soft emission and numerical evaluation of the differential cross-section, Nucl. Phys. B 716 (2005) 280 [hep-ph/0411321] [INSPIRE].

    Article  ADS  Google Scholar 

  38. R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi and J. van der Bij, Two-loop N (F ) = 1 QED Bhabha scattering differential cross section, Nucl. Phys. B 701 (2004) 121 [hep-ph/0405275] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Czakon, J. Gluza and T. Riemann, Master integrals for massive two-loop bhabha scattering in QED, Phys. Rev. D 71 (2005) 073009 [hep-ph/0412164] [INSPIRE].

    ADS  Google Scholar 

  40. Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. G. Heinrich and V.A. Smirnov, Analytical evaluation of dimensionally regularized massive on-shell double boxes, Phys. Lett. B 598 (2004) 55 [hep-ph/0406053] [INSPIRE].

    Article  ADS  Google Scholar 

  42. V.A. Smirnov, Analytical result for dimensionally regularized massive on-shell planar double box, Phys. Lett. B 524 (2002) 129 [hep-ph/0111160] [INSPIRE].

    Article  ADS  Google Scholar 

  43. L. Bork, D. Kazakov and G. Vartanov, On form factors in N = 4 SYM, JHEP 02 (2011) 063 [arXiv:1011.2440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, More loops and legs in Higgs-regulated N = 4 SYM amplitudes, JHEP 08 (2010) 002 [arXiv:1004.5381] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic Results for Virtual QCD Corrections to Higgs Production and Decay, JHEP 01 (2007) 021 [hep-ph/0611266] [INSPIRE].

    Article  ADS  Google Scholar 

  46. U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Master integrals for the two-loop light fermion contributions to g g → H and H → γ γ, Phys. Lett. B 600 (2004) 57 [hep-ph/0407162] [INSPIRE].

    Article  ADS  Google Scholar 

  47. U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two loop light fermion contribution to Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [INSPIRE].

    Article  ADS  Google Scholar 

  48. T. Gehrmann and E. Remiddi, Two loop master integrals for γ → 3 jets: The Nonplanar topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].

    Article  ADS  Google Scholar 

  49. C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S. Moch, P. Uwer and S. Weinzierl, Two loop amplitudes with nested sums: Fermionic contributions to e+ e → q\( \bar{q} \)g, Phys. Rev. D 66 (2002) 114001 [hep-ph/0207043] [INSPIRE].

    ADS  Google Scholar 

  51. S. Moch, P. Uwer and S. Weinzierl, Two loop amplitudes for e+ e → q\( \bar{q} \)g: The n(f ) contribution, Acta Phys. Polon. B 33 (2002) 2921 [hep-ph/0207167] [INSPIRE].

    ADS  Google Scholar 

  52. U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections I., JHEP 09 (2008) 107 [arXiv:0807.0514] [INSPIRE].

    Article  ADS  Google Scholar 

  53. V. Del Duca, C. Duhr, E. Nigel Glover and V.A. Smirnov, The One-loop pentagon to higher orders in epsilon, JHEP 01 (2010) 042 [arXiv:0905.0097] [INSPIRE].

    Article  ADS  Google Scholar 

  54. T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun. 141 (2001) 296 [hep-ph/0107173] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].

    Article  ADS  Google Scholar 

  56. D. Maître, Extension of HPL to complex arguments, Comput. Phys. Commun. 183 (2012) 846 [hep-ph/0703052] [INSPIRE].

    Article  ADS  Google Scholar 

  57. J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. A.I. Davydychev and M.Y. Kalmykov, New results for the ϵ-expansion of certain one, two and three loop Feynman diagrams, Nucl. Phys. B 605 (2001) 266 [hep-th/0012189] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. A.I. Davydychev and M.Y. Kalmykov, Massive Feynman diagrams and inverse binomial sums, Nucl. Phys. B 699 (2004) 3 [hep-th/0303162] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. D. Zagier, Special Values and Functional Equations of Polylogarithms, in L. Lewin ed., Structural Properties of Polylogarithms, AMS, Providence, RI, U.S.A. (1991), appendix A.

  61. H. Gangl, Functional equations of higher logarithms, Selecta Math. 9 (2003) 361 [math/0207222].

    Article  MathSciNet  MATH  Google Scholar 

  62. A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238.

  63. A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. V. Del Duca, C. Duhr and V.A. Smirnov, An Analytic Result for the Two-Loop Hexagon Wilson Loop in N = 4 SYM, JHEP 03 (2010) 099 [arXiv:0911.5332] [INSPIRE].

    Article  ADS  Google Scholar 

  65. V. Del Duca, C. Duhr and V.A. Smirnov, The Two-Loop Hexagon Wilson Loop in N = 4 SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [INSPIRE].

    Article  ADS  Google Scholar 

  66. S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP 12 (2011) 066 [arXiv:1105.5606] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP 11 (2011) 023 [arXiv:1108.4461] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. P. Heslop and V.V. Khoze, Wilson Loops @ 3-Loops in Special Kinematics, JHEP 11 (2011) 152 [arXiv:1109.0058] [INSPIRE].

    Article  ADS  Google Scholar 

  69. L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An Operator Product Expansion for Polygonal null Wilson Loops, JHEP 04 (2011) 088 [arXiv:1006.2788] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP 12 (2011) 011 [arXiv:1102.0062] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  71. A.I. Davydychev and R. Delbourgo, A Geometrical angle on Feynman integrals, J. Math. Phys. 39 (1998) 4299 [hep-th/9709216] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. M. Spradlin and A. Volovich, Symbols of One-Loop Integrals From Mixed Tate Motives, JHEP 11 (2011) 084 [arXiv:1105.2024] [INSPIRE].

    Google Scholar 

  73. L.J. Dixon, J.M. Drummond and J.M. Henn, The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N = 4 SYM, JHEP 06 (2011) 100 [arXiv:1104.2787] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  74. V. Del Duca, C. Duhr and V.A. Smirnov, The massless hexagon integral in D = 6 dimensions, Phys. Lett. B 703 (2011) 363 [arXiv:1104.2781] [INSPIRE].

    Article  ADS  Google Scholar 

  75. V. Del Duca, C. Duhr and V.A. Smirnov, The One-Loop One-Mass Hexagon Integral in D=6 Dimensions, JHEP 07 (2011) 064 [arXiv:1105.1333][INSPIRE].

    Article  ADS  Google Scholar 

  76. V. Del Duca, L.J. Dixon, J.M. Drummond, C. Duhr, J.M. Henn and V. A. Smirnov, The one-loop six-dimensional hexagon integral with three massive corners, Phys. Rev. D 84 (2011) 045017 [arXiv:1105.2011] [INSPIRE].

    ADS  Google Scholar 

  77. S. Buehler and C. Duhr, CHAPLIN - Complex Harmonic Polylogarithms in Fortran, arXiv:1106.5739 [INSPIRE].

  78. L.F. Alday, Some analytic results for two-loop scattering amplitudes, JHEP 07 (2011) 080 [arXiv:1009.1110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. J.A. Lappo-Danilevskij, Mémoires sur la théorie des systémes des équations différentielles linéaires. Vol. II, Travaux Inst. Physico-Math. Stekloff 7 (1935) 5.

  80. E.E. Kummer, Uber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen, J. Reine Angew. Math. 21 (1840) 74.

    Article  MATH  Google Scholar 

  81. R. Ree, Lie elements and an algebra associated with shuffles, The Annals of Mathematics 68 (1958)210.

    Article  MathSciNet  MATH  Google Scholar 

  82. J.M. Borwein, D.M. Bradley, D.J. Broadhurst and P. Lisonek, Special values of multiple polylogarithms, Trans. Am. Math. Soc. 353 (2001) 907 [math/9910045] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  83. N. Nielsen, Der Eulersche Dilogarithmus und seine Verallgemeinerungen, Nova Acta Leopoldina 90 (1909) 123.

    Google Scholar 

  84. L. Lewin, Polylogarithms and associated functions, North-Holland, New York (1981).

    MATH  Google Scholar 

  85. S. Bloch, H. Esnault and D. Kreimer, On Motives associated to graph polynomials, Commun. Math. Phys. 267 (2006) 181 [math/0510011] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  86. S. Bloch and D. Kreimer, Mixed Hodge Structures and Renormalization in Physics, Commun. Num. Theor. Phys. 2 (2008) 637 [arXiv:0804.4399] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  87. D. Broadhurst, P. Deligne, email correspondence (1997).

  88. D.J. Broadhurst, Massive three - loop Feynman diagrams reducible to SC primitives of algebras of the sixth root of unity, Eur. Phys. J. C 8 (1999) 311 [hep-th/9803091] [INSPIRE].

    ADS  Google Scholar 

  89. P. Belkale and P. Brosnan, Matroids, motives and conjecture of Kontsevich, Duke Math. J. 116 (2003)147 [math/0012198].

    Article  MathSciNet  MATH  Google Scholar 

  90. F. Brown, The Massless higher-loop two-point function, Commun. Math. Phys. 287 (2009) 925 [arXiv:0804.1660] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  91. A. Connes and M. Marcolli, Noncommutative geometry, quantum fields and motives, AMS, Colloquium Publications (2008).

  92. F.C.S. Brown, Multiple zeta values and periods of moduli spaces M0,n, Ann. Sci. Ecole. Norm. S. 42 (2009) 371 [math/0606419].

    MATH  Google Scholar 

  93. A.B. Goncharov, The dihedral Lie algebras and Galois symmetries of \( \uppi_1^{(1)}\left( {{{\mathrm{P}}^1}-\left( {\left\{ {0,\infty } \right\}\cup {\mu_{\mathrm{N}}}} \right)} \right) \), Duke Math. J. 110 (2001) 397 [math/0009121].

    Article  MathSciNet  MATH  Google Scholar 

  94. S. Bloch, Algebraic cycles and the Lie algebra of mixed Tate motives, J. Amer. Math. Soc. 4 (1991)771.

    Article  MathSciNet  MATH  Google Scholar 

  95. G. Griffing, Dual Lie Elements and a Derivation for the Cofree Coassociative Coalgebra, P. Am. Math. Soc. 123 (1995) 3269

    Article  MathSciNet  MATH  Google Scholar 

  96. N. Bourbaki, Groupes et algèbres de Lie, Hermann, Paris (1972), chapters 2 and 3.

  97. J.R. Rhodes, On the kernel of the symbol map for multiple polylogarithms, Ph.D. Thesis, University of Durham (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Duhr.

Additional information

ArXiv ePrint: 1110.0458

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duhr, C., Gangl, H. & Rhodes, J.R. From polygons and symbols to polylogarithmic functions. J. High Energ. Phys. 2012, 75 (2012). https://doi.org/10.1007/JHEP10(2012)075

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)075

Keywords

Navigation