Skip to main content
Log in

Domain walls in extended Lovelock gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We derive a BPS-like first order system of equations for a family of flat static domain walls (DWs) of dimensionally extended cubic Lovelock Gravity coupled to massive scalar self-interacting matter. The explicit construction of such DWs is achieved by introducing of an appropriate matter superpotential. We further analyse the dependence of the geometric properties of the asymptotically AdS d space-times representing distinct DWs on the shape of the matter potential, on the values of the Lovelock couplings and on the scalar field boundary conditions. Few explicit examples of Lovelock DWs interpolating between AdS-type vacua of different cosmological constants are presented. In five dimensions our method provides interesting solutions of the Myers-Robinson Quasi-topological Gravity in the presence of matter important for the description of the specific renormalization group flows in its holographic dual four-dimensional CFT perturbed by relevant operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kovtun, D. Son and A. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    Article  ADS  Google Scholar 

  2. P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [INSPIRE].

    Article  ADS  Google Scholar 

  4. A. Buchel, On universality of stress-energy tensor correlation functions in supergravity, Phys. Lett. B 609 (2005) 392 [hep-th/0408095] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. R.C. Myers, M.F. Paulos and A. Sinha, Holographic hydrodynamics with a chemical potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].

    Article  ADS  Google Scholar 

  9. D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].

    ADS  Google Scholar 

  11. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].

    Article  ADS  Google Scholar 

  12. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. R.C. Myers and B. Robinson, Black holes in quasi-topological gravity, JHEP 08 (2010) 067 [arXiv:1003.5357] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, JHEP 08 (2010) 035 [arXiv:1004.2055] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].

    ADS  Google Scholar 

  17. A. Buchel, J. Escobedo, R.C. Myers, M.F. Paulos, A. Sinha and M. Smolkin, Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J.T. Liu, W. Sabra and Z. Zhao, Holographic c-theorems and higher derivative gravity, arXiv:1012.3382 [INSPIRE].

  19. A. Sinha, On higher derivative gravity, c-theorems and cosmology, Class. Quant. Grav. 28 (2011) 085002 [arXiv:1008.4315] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M.F. Paulos, Holographic phase space: c-functions and black holes as renormalization group flows, JHEP 05 (2011) 043 [arXiv:1101.5993] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J. Oliva and S. Ray, A new cubic theory of gravity in five dimensions: Black hole, Birkhoffs theorem and C-function, Class. Quant. Grav. 27 (2010) 225002 [arXiv:1003.4773] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. M.M. Anber and D. Kastor, C-Functions in Lovelock Gravity, JHEP 05 (2008) 061 [arXiv:0802.1290] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  23. J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7 /CFT 6 , Gauss-Bonnet gravity and viscosity bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [INSPIRE].

    Article  Google Scholar 

  24. X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J. de Boer, M. Kulaxizi and A. Parnachev, Holographic Lovelock gravities and black holes, JHEP 06 (2010) 008 [arXiv:0912.1877] [INSPIRE].

    Article  Google Scholar 

  26. X.O. Camanho and J.D. Edelstein, Causality in AdS/CFT and Lovelock theory, JHEP 06 (2010) 099 [arXiv:0912.1944] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. X.O. Camanho, J.D. Edelstein and M.F. Paulos, Lovelock theories, holography and the fate of the viscosity bound, JHEP 05 (2011) 127 [arXiv:1010.1682] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  29. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].

  31. I. Low and A. Zee, Naked singularity and Gauss-Bonnet term in brane world scenarios, Nucl. Phys. B 585 (2000) 395 [hep-th/0004124] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. D. Freedman, C. Núñez, M. Schnabl and K. Skenderis, Fake supergravity and domain wall stability, Phys. Rev. D 69 (2004) 104027 [hep-th/0312055] [INSPIRE].

    ADS  Google Scholar 

  33. M. Cvetič, S. Griffies and S.-J. Rey, Static domain walls in N = 1 supergravity, Nucl. Phys. B 381 (1992) 301 [hep-th/9201007] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Cvetič and H.H. Soleng, Supergravity domain walls, Phys. Rept. 282 (1997) 159 [hep-th/9604090] [INSPIRE].

    Article  ADS  Google Scholar 

  35. P. Breitenlohner and D.Z. Freedman, Positive energy in anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett. B 115 (1982) 197 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. O. Mišković and R. Olea, Counterterms in dimensionally continued AdS gravity, JHEP 10 (2007) 028 [arXiv:0706.4460] [INSPIRE].

    ADS  Google Scholar 

  38. G. Kofinas and R. Olea, Universal regularization prescription for Lovelock AdS gravity, JHEP 11 (2007) 069 [arXiv:0708.0782] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. G. Kofinas and R. Olea, Universal kounterterms in Lovelock AdS gravity, Fortsch. Phys. 56 (2008) 957 [arXiv:0806.1197] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. E. Dyer and K. Hinterbichler, Boundary terms, variational principles and higher derivative modified gravity, Phys. Rev. D 79 (2009) 024028 [arXiv:0809.4033] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. D.G. Boulware and S. Deser, String generated gravity models, Phys. Rev. Lett. 55 (1985) 2656 [INSPIRE].

    Article  ADS  Google Scholar 

  42. J. Sonner and P.K. Townsend, Axion-dilaton domain walls and fake supergravity, Class. Quant. Grav. 24 (2007) 3479 [hep-th/0703276] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. J. Sonner and P.K. Townsend, Dilaton domain walls and dynamical systems, Class. Quant. Grav. 23 (2006) 441 [hep-th/0510115] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89114 [hep-th/9905104] [INSPIRE].

    MathSciNet  Google Scholar 

  45. J. de Boer, The holographic renormalization group, Fortsch. Phys. 49 (2001) 339 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].

    Article  Google Scholar 

  47. A.B. Zamolodchikov, Irreversibilityof the flux of the renormalization group in a 2D field theory, Sov. Phys. JETP Lett. 43 (1986) 730.

    MathSciNet  ADS  Google Scholar 

  48. A. Zamolodchikov, Renormalization group and perturbation theory near fixed points in two-dimensional field theory, Sov. J. Nucl. Phys. 46 (1987) 1090 [INSPIRE].

    MathSciNet  Google Scholar 

  49. D. Freedman, S. Gubser, K. Pilch and N. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  50. L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. J. Distler and F. Zamora, Nonsupersymmetric conformal field theories from stable anti-de Sitter spaces, Adv. Theor. Math. Phys. 2 (1999) 1405 [hep-th/9810206] [INSPIRE].

    MathSciNet  Google Scholar 

  53. A. Sinha, On the new massive gravity and AdS/CFT, JHEP 06 (2010) 061 [arXiv:1003.0683] [INSPIRE].

    Article  ADS  Google Scholar 

  54. H. Louzada, U. Camara dS and G. Sotkov, Massive 3D gravity big-bounce, Phys. Lett. B 686 (2010) 268 [arXiv:1001.3622] [INSPIRE].

    ADS  Google Scholar 

  55. K. Skenderis and P.K. Townsend, Gravitational stability and renormalization group flow, Phys. Lett. B 468 (1999) 46 [hep-th/9909070] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  56. J. Zanelli, Lecture notes on Chern-Simons (super-)gravities. Second edition (2008), hep-th/0502193 [INSPIRE].

  57. P. Mora, R. Olea, R. Troncoso and J. Zanelli, Finite action principle for Chern-Simons AdS gravity, JHEP 06 (2004) 036 [hep-th/0405267] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. J. Cardy, Cambridge Lecture notes in Physics. Vol. 5: Scaling and Renormalization in Statistical Physics, Cambridge University Press, Cambridge U.K. (1996).

    Google Scholar 

  59. L.-Y. Hung, R.C. Myers and M. Smolkin, Some calculable contributions to holographic entanglement entropy, JHEP 08 (2011) 039 [arXiv:1105.6055] [INSPIRE].

    Article  ADS  Google Scholar 

  60. L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

    Article  ADS  Google Scholar 

  61. J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].

    Article  ADS  Google Scholar 

  62. U. Camara and G. Sotkov, New massive gravity domain walls, Phys. Lett. B 694 (2010) 94 [arXiv:1008.2553] [INSPIRE].

    ADS  Google Scholar 

  63. M. Dehghani, A. Bazrafshan, R. Mann, M. Mehdizadeh and M. Ghanaatian, Black holes in quartic quasitopological gravity, arXiv:1109.4708 [INSPIRE].

  64. U.C. dS, C. Constantinidis and G. Sotkov, New massive gravity holography, arXiv:1009.2665 [INSPIRE].

  65. U. Camara da Silva and G.M. Sotkov, Holographic RG flows from Lovelock domain walls, in preparation.

  66. A.L.A. Lima, U.Camara da Silva, C.P. Constantinidis and G.M. Sotkov, Extended cubic Lovelock cosmological models, in preparation.

  67. R.C. Myers and A. Singh, Comments on holographic entanglement entropy and RG flows, arXiv:1202.2068 [INSPIRE].

  68. U. Camara da Silva and G. Sotkov, Geometry of the new massive gravity domain walls, PoS(ICFI 2010)026.

  69. G.M Sotkov, RG flows in QFTs dual to Lovelockgravity, talk at the workshop Quantum Field Theory and Quantum Gravity, Ubu Brazil (2012). Web site: http://eventopiguet.ufes.br.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Camara da Silva.

Additional information

ArXiv ePrint: 1202.4682

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camara da Silva, U., Constantinidis, C.P., Lima, A.L.A. et al. Domain walls in extended Lovelock gravity. J. High Energ. Phys. 2012, 109 (2012). https://doi.org/10.1007/JHEP04(2012)109

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)109

Keywords

Navigation