Abstract
We study the massless Dirac field on the line in the presence of a point-like defect characterised by a unitary scattering matrix, that allows both reflection and transmission. Considering this system in its ground state, we derive the modular Hamiltonians of the subregion given by the union of two disjoint equal intervals at the same distance from the defect. The absence of energy dissipation at the defect implies the existence of two phases, where either the vector or the axial symmetry is preserved. Besides a local term, the densities of the modular Hamiltonians contain also a sum of scattering dependent bi-local terms, which involve two conjugate points generated by the reflection and the transmission. The modular flows of each component of the Dirac field mix the trajectory passing through a given initial point with the ones passing through its reflected and transmitted conjugate points. We derive the two-point correlation functions along the modular flows in both phases and show that they satisfy the Kubo-Martin-Schwinger condition. The entanglement entropies are also computed, finding that they do not depend on the scattering matrix.
References
R. Haag, Local quantum physics: Fields, particles, algebras, Springer (1996) [DOI].
M. Takesaki, Theory of Operator Algebras II, Springer (2003) [DOI].
J.J. Bisognano and E.H. Wichmann, On the Duality Condition for a Hermitian Scalar Field, J. Math. Phys. 16 (1975) 985 [INSPIRE].
J.J. Bisognano and E.H. Wichmann, On the Duality Condition for Quantum Fields, J. Math. Phys. 17 (1976) 303 [INSPIRE].
P.D. Hislop and R. Longo, Modular Structure of the Local Algebras Associated With the Free Massless Scalar Field Theory, Commun. Math. Phys. 84 (1982) 71 [INSPIRE].
R. Brunetti, D. Guido and R. Longo, Modular structure and duality in conformal quantum field theory, Commun. Math. Phys. 156 (1993) 201 [arXiv:funct-an/9302008] [INSPIRE].
H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].
G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement Temperature and Entanglement Entropy of Excited States, JHEP 12 (2013) 020 [arXiv:1305.3291] [INSPIRE].
J. Cardy and E. Tonni, Entanglement hamiltonians in two-dimensional conformal field theory, J. Stat. Mech. 1612 (2016) 123103 [arXiv:1608.01283] [INSPIRE].
E. Tonni, J. RodrÃguez-Laguna and G. Sierra, Entanglement hamiltonian and entanglement contour in inhomogeneous 1D critical systems, J. Stat. Mech. 1804 (2018) 043105 [arXiv:1712.03557] [INSPIRE].
H. Casini and M. Huerta, Reduced density matrix and internal dynamics for multicomponent regions, Class. Quant. Grav. 26 (2009) 185005 [arXiv:0903.5284] [INSPIRE].
I. Peschel, Calculation of reduced density matrices from correlation functions, J. Phys. A 36 (2003) L205 [cond-mat/0212631].
H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].
V. Eisler and I. Peschel, Reduced density matrices and entanglement entropy in free lattice models, J. Phys. A 42 (2009) 504003 [arXiv:0906.1663].
R. Longo, P. Martinetti and K.-H. Rehren, Geometric modular action for disjoint intervals and boundary conformal field theory, Rev. Math. Phys. 22 (2010) 331 [arXiv:0912.1106] [INSPIRE].
I. Klich, D. Vaman and G. Wong, Entanglement Hamiltonians for chiral fermions with zero modes, Phys. Rev. Lett. 119 (2017) 120401 [arXiv:1501.00482] [INSPIRE].
D. Blanco and G. Pérez-Nadal, Modular Hamiltonian of a chiral fermion on the torus, Phys. Rev. D 100 (2019) 025003 [arXiv:1905.05210] [INSPIRE].
P. Fries and I.A. Reyes, Entanglement Spectrum of Chiral Fermions on the Torus, Phys. Rev. Lett. 123 (2019) 211603 [arXiv:1905.05768] [INSPIRE].
S. Hollands, On the modular operator of mutli-component regions in chiral CFT, arXiv:1904.08201 [INSPIRE].
J.L. Cardy, Conformal Invariance and Surface Critical Behavior, Nucl. Phys. B 240 (1984) 514 [INSPIRE].
J.L. Cardy, Effect of Boundary Conditions on the Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys. B 275 (1986) 200 [INSPIRE].
J.L. Cardy, Boundary Conditions, Fusion Rules and the Verlinde Formula, Nucl. Phys. B 324 (1989) 581 [INSPIRE].
M. Mintchev, Non-equilibrium Steady States of Quantum Systems on Star Graphs, J. Phys. A 44 (2011) 415201 [arXiv:1106.5871] [INSPIRE].
P.B. Smith and D. Tong, Boundary States for Chiral Symmetries in Two Dimensions, JHEP 09 (2020) 018 [arXiv:1912.01602] [INSPIRE].
A. Liguori and M. Mintchev, Quantum field theory, bosonization and duality on the half line, Nucl. Phys. B 522 (1998) 345 [hep-th/9710092] [INSPIRE].
M. Mintchev and E. Tonni, Modular Hamiltonians for the massless Dirac field in the presence of a boundary, arXiv:2012.00703 [INSPIRE].
N. Andrei et al., Boundary and Defect CFT: Open Problems and Applications, J. Phys. A 53 (2020) 453002 [arXiv:1810.05697] [INSPIRE].
R. Landauer, Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction, IBM J. Res. Dev. 1 (1957) 223.
R. Landauer, Electrical resistance of disordered one-dimensional lattices, Phil. Mag. 21 (1970) 863.
M. Büttiker, Four-Terminal Phase-Coherent Conductance, Phys. Rev. Lett. 57 (1986) 1761.
M. Büttiker, Symmetry of electrical conduction, IBM J. Res. Dev. 32 (1988) 317.
N. Andrei, K. Furuya and J.H. Lowenstein, Solution of the Kondo Problem, Rev. Mod. Phys. 55 (1983) 331 [INSPIRE].
I. Affleck, Conformal field theory approach to the Kondo effect, Acta Phys. Polon. B 26 (1995) 1869 [cond-mat/9512099] [INSPIRE].
A.W.W. Ludwig, Field theory approach to critical quantum impurity problems and applications to the multichannel Kondo effect, Int. J. Mod. Phys. B 8 (1994) 347 [INSPIRE].
H. Saleur, Lectures on nonperturbative field theory and quantum impurity problems, cond-mat/9812110 [INSPIRE].
C. Nayak, M.P.A. Fisher, A.W.W. Ludwig and H.H. Lin, Resonant multilead point-contact tunneling, Phys. Rev. B 59 (1999) 15694 [INSPIRE].
M. Oshikawa, C. Chamon and I. Affleck, Junctions of three quantum wires, J. Stat. Mech. 0602 (2006) P02008 [cond-mat/0509675] [INSPIRE].
B. Bellazzini, P. Calabrese and M. Mintchev, Junctions of anyonic Luttinger wires, Phys. Rev. B 79 (2009) 085122 [arXiv:0808.2719] [INSPIRE].
M. Bischoff, Y. Kawahigashi, R. Longo and K.-H. Rehren, Phase boundaries in algebraic conformal QFT, Commun. Math. Phys. 342 (2016) 1 [arXiv:1405.7863] [INSPIRE].
J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Duality and defects in rational conformal field theory, Nucl. Phys. B 763 (2007) 354 [hep-th/0607247] [INSPIRE].
P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].
E.S. Sorensen, M.-S. Chang, N. Laflorencie and I. Affleck, Quantum Impurity Entanglement, J. Stat. Mech. 0708 (2007) P08003 [arXiv:cond-mat/0703037].
K. Sakai and Y. Satoh, Entanglement through conformal interfaces, JHEP 12 (2008) 001 [arXiv:0809.4548] [INSPIRE].
N.I. Affleck Laflorencie and E.S. Sorensen, Entanglement entropy in quantum impurity systems and systems with boundaries, J. Phys. A 42 (2009) 504009 [arXiv:0906.1809].
V. Eisler and I. Peschel, Solution of the fermionic entanglement problem with interface defects, Annals Phys. 522 (2010) 679 [arXiv:1005.2144].
P. Calabrese, M. Mintchev and E. Vicari, Entanglement Entropy of Quantum Wire Junctions, J. Phys. A 45 (2012) 105206 [arXiv:1110.5713] [INSPIRE].
V. Eisler and I. Peschel, Exact results for the entanglement across defects in critical chains, J. Phys. A 45 (2012) 155301 [arXiv:1201.4104].
H. Saleur, P. Schmitteckert and R. Vasseur, Entanglement in quantum impurity problems is nonperturbative, Phys. Rev. B 88 (2013) 085413 [arXiv:1305.1482] [INSPIRE].
A. Ossipov, Entanglement entropy in Fermi gases and Anderson’s orthogonality catastrophe, Phys. Rev. Lett. 113 (2014) 130402 [arXiv:1404.2506].
G. Di Giulio and E. Tonni, On entanglement hamiltonians of an interval in massless harmonic chains, J. Stat. Mech. 2003 (2020) 033102 [arXiv:1911.07188] [INSPIRE].
K. Jensen and A. O’Bannon, Holography, Entanglement Entropy, and Conformal Field Theories with Boundaries or Defects, Phys. Rev. D 88 (2013) 106006 [arXiv:1309.4523] [INSPIRE].
B. Bellazzini and M. Mintchev, Quantum Fields on Star Graphs, J. Phys. A 39 (2006) 11101 [hep-th/0605036] [INSPIRE].
B. Bellazzini, M. Burrello, M. Mintchev and P. Sorba, Quantum Field Theory on Star Graphs, Proc. Symp. Pure Math. 77 (2008) 639 [arXiv:0801.2852] [INSPIRE].
K.-H. Rehren and G. Tedesco, Multilocal fermionization, Lett. Math. Phys. 103 (2013) 19 [arXiv:1205.0324] [INSPIRE].
P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech. 0911 (2009) P11001 [arXiv:0905.2069] [INSPIRE].
P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech. 1101 (2011) P01021 [arXiv:1011.5482] [INSPIRE].
A. Coser, L. Tagliacozzo and E. Tonni, On Rényi entropies of disjoint intervals in conformal field theory, J. Stat. Mech. 1401 (2014) P01008 [arXiv:1309.2189] [INSPIRE].
C. De Nobili, A. Coser and E. Tonni, Entanglement entropy and negativity of disjoint intervals in CFT: Some numerical extrapolations, J. Stat. Mech. 1506 (2015) P06021 [arXiv:1501.04311] [INSPIRE].
V. Eisler and I. Peschel, Analytical results for the entanglement Hamiltonian of a free-fermion chain, J. Phys. A 50 (2017) 284003 [arXiv:1703.08126] [INSPIRE].
V. Eisler and I. Peschel, Properties of the entanglement Hamiltonian for finite free-fermion chains, J. Stat. Mech. 1810 (2018) 104001 [arXiv:1805.00078] [INSPIRE].
R. Arias, D. Blanco, H. Casini and M. Huerta, Local temperatures and local terms in modular Hamiltonians, Phys. Rev. D 95 (2017) 065005 [arXiv:1611.08517] [INSPIRE].
V. Eisler, E. Tonni and I. Peschel, On the continuum limit of the entanglement Hamiltonian, J. Stat. Mech. 1907 (2019) 073101 [arXiv:1902.04474] [INSPIRE].
H. Li and F. Haldane, Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States, Phys. Rev. Lett. 101 (2008) 010504 [arXiv:0805.0332] [INSPIRE].
Y. Chen and G. Vidal, Entanglement contour, J. Stat. Mech. 2014 (2014) P10011 [arXiv:1406.1471].
A. Coser, C. De Nobili and E. Tonni, A contour for the entanglement entropies in harmonic lattices, J. Phys. A 50 (2017) 314001 [arXiv:1701.08427] [INSPIRE].
A.M. Läuchli, Operator content of real-space entanglement spectra at conformal critical points, arXiv:1303.0741 [INSPIRE].
V. Alba, P. Calabrese and E. Tonni, Entanglement spectrum degeneracy and the Cardy formula in 1+1 dimensional conformal field theories, J. Phys. A 51 (2018) 024001 [arXiv:1707.07532] [INSPIRE].
G. Di Giulio, R. Arias and E. Tonni, Entanglement hamiltonians in 1D free lattice models after a global quantum quench, J. Stat. Mech. 1912 (2019) 123103 [arXiv:1905.01144] [INSPIRE].
J. Surace, L. Tagliacozzo and E. Tonni, Operator content of entanglement spectra in the transverse field Ising chain after global quenches, Phys. Rev. B 101 (2020) 241107(R) [arXiv:1909.07381] [INSPIRE].
A. Roy, F. Pollmann and H. Saleur, Entanglement Hamiltonian of the 1+1-dimensional free, compactified boson conformal field theory, J. Stat. Mech. 2008 (2020) 083104 [arXiv:2004.14370] [INSPIRE].
H. Casini, I. Salazar Landea and G. Torroba, The g-theorem and quantum information theory, JHEP 10 (2016) 140 [arXiv:1607.00390] [INSPIRE].
N. Kobayashi, T. Nishioka, Y. Sato and K. Watanabe, Towards a C-theorem in defect CFT, JHEP 01 (2019) 039 [arXiv:1810.06995] [INSPIRE].
V. Eisler, G. Di Giulio, E. Tonni and I. Peschel, Entanglement Hamiltonians for non-critical quantum chains, J. Stat. Mech. 2010 (2020) 103102 [arXiv:2007.01804] [INSPIRE].
H. Casini, I. Salazar Landea and G. Torroba, Irreversibility in quantum field theories with boundaries, JHEP 04 (2019) 166 [arXiv:1812.08183] [INSPIRE].
C. Bachas, J. de Boer, R. Dijkgraaf and H. Ooguri, Permeable conformal walls and holography, JHEP 06 (2002) 027 [hep-th/0111210] [INSPIRE].
T. Azeyanagi, A. Karch, T. Takayanagi and E.G. Thompson, Holographic calculation of boundary entropy, JHEP 03 (2008) 054 [arXiv:0712.1850] [INSPIRE].
J. Erdmenger, C. Hoyos, A. O’Bannon and J. Wu, A Holographic Model of the Kondo Effect, JHEP 12 (2013) 086 [arXiv:1310.3271] [INSPIRE].
M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].
D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].
T. Takayanagi, Holographic Dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].
M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043 [arXiv:1108.5152] [INSPIRE].
M. Nozaki, T. Takayanagi and T. Ugajin, Central Charges for BCFTs and Holography, JHEP 06 (2012) 066 [arXiv:1205.1573] [INSPIRE].
D. Seminara, J. Sisti and E. Tonni, Corner contributions to holographic entanglement entropy in AdS4/BCFT3, JHEP 11 (2017) 076 [arXiv:1708.05080] [INSPIRE].
D. Seminara, J. Sisti and E. Tonni, Holographic entanglement entropy in AdS4/BCFT3 and the Willmore functional, JHEP 08 (2018) 164 [arXiv:1805.11551] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2012.01366
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Mintchev, M., Tonni, E. Modular Hamiltonians for the massless Dirac field in the presence of a defect. J. High Energ. Phys. 2021, 205 (2021). https://doi.org/10.1007/JHEP03(2021)205
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2021)205
Keywords
- Conformal Field Theory
- Field Theories in Lower Dimensions