Skip to main content
Log in

Improved image method for a holographic description of conical defects

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The geodesics prescription in the holographic approach in the Lorentzian signature is applicable only for geodesics connecting spacelike-separated points at the boundary because there are no timelike geodesics that reach the boundary. Also, generally speaking, there is no direct analytic Euclidean continuation for a general background, such as a moving particle in the AdS space. We propose an improved geodesic image method for two-point Lorentzian correlators that is applicable for arbitrary time intervals when the space–time is deformed by point particles. We show that such a prescription agrees with the case where the analytic continuation exists and also with the previously used prescription for quasigeodesics. We also discuss some other applications of the improved image method: holographic entanglement entropy and multiple particles in the AdS3 space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Maldacena, Adv. Theoret. Math. Phys., 2, 231–252 (1998); arXiv:hep-th/9711200v3 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  2. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett B., 428, 105–114 (1998); arXiv:hep-th/9802109v2 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  3. E. Witten, Adv. Theoret. Math. Phys., 2, 253–291 (1998); arXiv:hep-th/9802150v2 (1998).

    Article  ADS  Google Scholar 

  4. O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, Phys. Rept., 323, 183–386 (2000); arXiv:hepth/9905111v3 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A. Wiedemann, “Gauge/string duality, hot QCD, and heavy ion collisions,” arXiv:1101.0618v2 [hep-th] (2011).

    MATH  Google Scholar 

  6. I. Ya. Aref’eva, Phys. Usp., 57, 527–555 (2014).

    Article  Google Scholar 

  7. O. DeWolfe, S. S. Gubser, C. Rosen, and D. Teaney, Prog. Part. Nucl. Phys., 75, 86–132 (2014); arXiv: 1304.7794v2 [hep-th] (2013).

    Article  ADS  Google Scholar 

  8. S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, JHEP, 0812, 015 (2008); arXiv:0810.1563v1 [hep-th] (2008).

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Sachdev, “Condensed matter and AdS/CFT,” in: From Gravity to Thermal Gauge Theories: The AdS/CFT Correspondence (Lect. Notes Phys., Vol. 828, E. Papantonopoulos, ed.), Springer, Berlin (2011), pp. 273–311; arXiv:1002.2947v1 [hep-th] (2010).

    Chapter  Google Scholar 

  10. V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri, B. Müller, A. Schäfer, M. Shigemori, and W. Staessens, Phys. Rev. D, 84, 026010 (2011); arXiv:1103.2683v1 [hep-th] (2011).

    Article  ADS  Google Scholar 

  11. J. Aparício and E. López, JHEP, 1112, 082 (2011); arXiv:1109.3571v1 [hep-th] (2011).

    Article  ADS  Google Scholar 

  12. V. Keränen, E. Keski-Vakkuri, and L. Thorlacius, Phys. Rev. D, 85, 026005 (2012); arXiv:1110.5035v2 [hep-th] (2011).

    Article  ADS  Google Scholar 

  13. C. T. Asplund, A. Bernamonti, F. Galli, and T. Hartman, JHEP, 1502, 171 (2015); arXiv:1410.1392v2 [hep-th] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  14. E. Caceres and A. Kundu, JHEP, 1209, 055 (2012); arXiv:1205.2354v2 [hep-th] (2012).

    Article  ADS  Google Scholar 

  15. V. Balasubramanian, A. Bernamonti, B. Craps, V. Keränen, E. Keski-Vakkuri, B. Müller, L. Thorlacius, and J. Vanhoof, JHEP, 1304, 069 (2013); arXiv:1212.6066v2 [hep-th] (2012).

    Article  ADS  Google Scholar 

  16. I. Aref’eva, A. Bagrov, and A. S. Koshelev, JHEP, 1307, 170 (2013); arXiv:1305.3267v2 [hep-th] (2013).

    Article  ADS  MathSciNet  Google Scholar 

  17. I. Y. Aref’eva, Theor. Math. Phys., 184, 1239–1256 (2015); arXiv:1503.02185v1 [hep-th] (2015); AIP Conf. Proc., 1701, 090001 (2016).

    Article  MathSciNet  Google Scholar 

  18. D. T. Son and A. O. Starinets, JHEP, 0209, 042 (2002); arXiv:hep-th/0205051v2 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Ryu and T. Takayanagi, Phys. Rev. Lett., 96, 181602 (2006); arXiv:hep-th/0603001v2 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  20. R. Callan, J. Y. He, and M. Headrick, JHEP, 1206, 081 (2012); arXiv:1204.2309v1 [hep-th] (2012).

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Abajo-Arrastia, J. Aparicio, and E. Lopez, JHEP, 1011, 149 (2010); arXiv:1006.4090v1 [hep-th] (2010).

    Article  ADS  Google Scholar 

  22. V. Balasubramanian, B. D. Chowdhury, B. Czech, and J. de Boer, JHEP, 1501, 048 (2015); arXiv:1406.5859v2 [hep-th] (2014).

    Article  ADS  Google Scholar 

  23. J. Maldacena, S. H. Shenker, and D. Stanford, “A bound on chaos,” arXiv:1503.01409v1 [hep-th] (2015).

    Google Scholar 

  24. A. Maloney and E. Witten, JHEP, 1002, 029 (2010); arXiv:0712.0155v1 [hep-th] (2007).

    Article  ADS  MathSciNet  Google Scholar 

  25. A. L. Fitzpatrick, J. Kaplan, and M. T. Walters, JHEP, 1408, 145 (2014); arXiv:1403.6829v2 [hep-th] (2014).

    Article  ADS  Google Scholar 

  26. K. B. Alkalaev and V. A. Belavin, Nucl. Phys. B, 904, 367–385 (2016); arXiv:1510.06685v2 [hep-th] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  27. N. Benjamin, E. Dyer, A. L. Fitzpatrick, A. Maloney, and E. Perlmutter, “Small black holes and near-extremal CFTs,” arXiv:1603.08524v1 [hep-th] (2016).

    Google Scholar 

  28. V. Balasubramanian and S. F. Ross, Phys. Rev. D, 61, 044007 (2000); arXiv:hep-th/9906226v1 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  29. T. Banks, M. R. Douglas, G. T. Horowitz, and E. J. Martinec, “AdS dynamics from conformal field theory,” arXiv:hep-th/9808016v1 (1998).

    Google Scholar 

  30. V. E. Hubeny and M. Rangamani, Adv. High Energy Phys., 2010, 297916 (2010); arXiv:1006.3675v2 [hep-th] (2010).

    Article  Google Scholar 

  31. T. Albash and C. V. Johnson, New J. Phys., 13, 045017 (2011); arXiv:1008.3027v2 [hep-th] (2010).

    Article  ADS  Google Scholar 

  32. I. Arefeva, A. Bagrov, P. Säterskog, and K. Schalm, Phys. Rev. D, 94, 044059 (2016); arXiv:1508.04440v1 [hep-th] (2015).

    Article  ADS  Google Scholar 

  33. D. S. Ageev, I. Ya. Aref’eva, and M. D. Tikhanovskaya, Theor. Math. Phys., 188, 1038–1068 (2016); arXiv: 1512.03362v2 [hep-th] (2015).

    Article  MathSciNet  Google Scholar 

  34. D. S. Ageev and I. Ya. Aref’eva, “Holographic dual to conical defects: II. Colliding ultrarelativistic particles,” arXiv:1512.03363v1 [hep-th] (2015).

    Google Scholar 

  35. I. Ya. Aref’eva and A. A. Bagrov, Theor. Math. Phys., 182, 1–22 (2015).

    Article  MathSciNet  Google Scholar 

  36. S. Deser, R. Jackiw, and G. Hooft, Ann. Phys., 152, 220–235 (1984).

    Article  ADS  Google Scholar 

  37. S. Deser and R. Jackiw, Ann. Phys., 153, 405–416 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  38. S. Deser and R. Jackiw, Commun. Math. Phys., 118, 495–509 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  39. G.’ t Hooft, Class. Q. Grav., 13, 1023–1039 (1996); arXiv:gr-qc/9601014v1 (1996).

    Article  ADS  Google Scholar 

  40. I. Ya. Aref’eva and M. A. Khramtsov, JHEP, 1604, 121 (2016); arXiv:1601.02008v2 [hep-th] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  41. M. O. Katanaev and I. V. Volovich, Ann. Phys., 216, 1–28 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  42. C. A. B. Bayona, C. N. Ferreira, and V. J. Vasquez Otoya, Class. Q. Grav., 28, 015011 (2011); arXiv:1003.5396v3 [hep-th] (2010).

    Article  ADS  Google Scholar 

  43. A. Hamilton, D. Kabat, G. Lifschytz, and D. A. Lowe, Phys. Rev. D, 74, 066009 (2006); arXiv:hep-th/0606141v1 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  44. K. Osterwalder and R. Schrader, Commun. Math. Phys., 31, 83–12 (1973); 42, 281–305 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Lüscher and G. Mack, Commun. Math. Phys., 41, 203–234 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ya. Aref’eva.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 189, No. 2, pp. 296–311, November, 2016.

Section 3 was done by M. A. Khramtsov, and the remaining sections were done by I. Ya. Aref’eva and M. D. Tikhanovskaya. The research of I. Ya. Aref’eva and M. D. Tikhanovskaya was performed at the Steklov Mathematical Institute of Russian Academy of Sciences and supported by a grant from the Russian Science Foundation (Project No. 14-11-00687).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aref’eva, I.Y., Khramtsov, M.A. & Tikhanovskaya, M.D. Improved image method for a holographic description of conical defects. Theor Math Phys 189, 1660–1672 (2016). https://doi.org/10.1134/S0040577916110106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577916110106

Keywords

Navigation