Skip to main content
Log in

A holographic model of the Kondo effect

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose a model of the Kondo effect based on the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, also known as holography. The Kondo effect is the screening of a magnetic impurity coupled anti-ferromagnetically to a bath of conduction electrons at low temperatures. In a (1+1)-dimensional CFT description, the Kondo effect is a renormalization group flow triggered by a marginally relevant (0+1)-dimensional operator between two fixed points with the same Kac-Moody current algebra. In the large-N limit, with spin SU(N) and charge U(1) symmetries, the Kondo effect appears as a (0+1)-dimensional second-order mean-field transition in which the U(1) charge symmetry is spontaneously broken. Our holographic model, which combines the CFT and large-N descriptions, is a Chern-Simons gauge field in (2+1)-dimensional AdS space, AdS 3, dual to the Kac-Moody current, coupled to a holographic superconductor along an AdS 2 sub-space. Our model exhibits several characteristic features of the Kondo effect, including a dynamically generated scale, a resistivity with power-law behavior in temperature at low temperatures, and a spectral flow producing a phase shift. Our holographic Kondo model may be useful for studying many open problems involving impurities, including for example the Kondo lattice problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys. 32 (1964) 37.

    Article  ADS  Google Scholar 

  2. C. Rizzuto, Formation of localized moments in metals: experimental bulk properties, Rep. Prog. Phys. 37 (1974) 147.

    Article  ADS  Google Scholar 

  3. G. Grüner and A. Zawadowski, Low temperature properties of Kondo alloys, in Progress in low temperature physics, D. Brewer ed., Elsevier, Amsterdam The Netherlands (1978).

    Google Scholar 

  4. D. Goldhaber-Gordon et al., Kondo effect in a single-electron transistor, Nature 391 (1998) 156.

    Article  ADS  Google Scholar 

  5. S. Cronenwett, T. Oosterkamp and L. Kouwenhoven, A tunable Kondo effect in quantum dots, Science 281 (1998) 540.

    Article  ADS  Google Scholar 

  6. W.G. van der Wiel et al., The Kondo effect in the unitary limit, Science 289 (2000) 2105.

    Article  ADS  Google Scholar 

  7. K.G. Wilson, The renormalization group: critical phenomena and the Kondo problem, Rev. Mod. Phys. 47 (1975) 773 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. P. Nozières, AFermi-liquiddescription of the Kondo problem at low temperatures, Jour. Low Temp. Phys. 17 (1974) 31.

    Article  ADS  Google Scholar 

  9. P. Nozières, The Kondo problem: fancy mathematical techniques versus simple physical ideas, in Low temperature physics conference proceedings, Krusius and Vuorio eds., Elsevier, Amsterdam The Netherlands (1975).

    Google Scholar 

  10. N. Andrei, Diagonalization of the Kondo hamiltonian, Phys. Rev. Lett. 45 (1980) 379.

    Article  ADS  Google Scholar 

  11. P. Wiegmann, Exact solution of s-d exchange model at T = 0, Sov. Phys. JETP Lett. 31 (1980) 364.

    ADS  Google Scholar 

  12. N. Andrei, K. Furuya and J.H. Lowenstein, Solution of the Kondo problem, Rev. Mod. Phys. 55 (1983) 331.

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Tsvelick and P. Wiegmann, Exact results in the theory of magnetic alloys, Adv. Phys. 32 (1983) 453.

    Article  ADS  Google Scholar 

  14. P. Coleman and N. Andrei, Diagonalisation of the Generalised Anderson model, Jour. Phys. C 19 (1986) 3211.

    ADS  Google Scholar 

  15. P. Coleman, Mixed valence as an almost broken symmetry, Phys. Rev. B 35 (1987) 5072.

    Article  ADS  Google Scholar 

  16. N. Bickers, Review of techniques in the large-N expansion for dilute magnetic alloys, Rev. Mod. Phys. 59 (1987) 845.

    Article  ADS  Google Scholar 

  17. O. Parcollet, A. Georges, G. Kotliar and A. Sengupta, Overscreened multichannel SU(N) Kondo model: large-n solution and conformal field theory, Phys. Rev. B 58 (1998) 3794 [cond-mat/9711192].

    Article  ADS  Google Scholar 

  18. I. Affleck, A current algebra approach to the Kondo effect, Nucl. Phys. B 336 (1990) 517 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. I. Affleck and A.W. Ludwig, The Kondo effect, conformal field theory and fusion rules, Nucl. Phys. B 352 (1991) 849 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. I. Affleck and A.W. Ludwig, Critical theory of overscreened Kondo fixed points, Nucl. Phys. B 360 (1991) 641 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. I. Affleck and A.W. Ludwig, Universal nonintegerground state degeneracyin critical quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. I. Affleck and A. Ludwig, Exact conformal-field-theory results on the multichannel Kondo effect: single-fermion Greens function, self-energy, and resistivity, Phys. Rev. B 48 (1993) 7297.

    Article  ADS  Google Scholar 

  23. I. Affleck, Conformal field theory approach to the Kondo effect, Acta Phys. Polon. B 26 (1995) 1869 [cond-mat/9512099] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  24. A. Hewson, The Kondo model to heavy fermions, Cambridge University Press, Cambridge U.K. (1993).

    Book  Google Scholar 

  25. D.L. Cox and A. Zawadowski, Exotic kondo effects in metals: Magnetic ions in a crystalline electric field and tunneling centers, Adv. Phys. 47 (1998) 599 [cond-mat/9704103].

    Article  Google Scholar 

  26. S. Doniach, The Kondo lattice and weak anti-ferromagnetism, Physica B+C 91 (1977) 23.

    Google Scholar 

  27. H. Tsunetsugu, M. Sigrist, and K. Ueda, The ground-state phase diagram of the one-dimensional Kondo lattice model, Rev. Mod. Phys. 69 (1997) 809.

    Article  ADS  Google Scholar 

  28. P. Coleman, Heavy Fermions: electrons at the edge of magnetism, in Handbook of magnetism and advanced magnetic materials: fundamentals and theory, H. Kronmüller and S. Parkin eds., John Wiley and Sons, U.S.A. (2007), cond-mat/0612006.

    Google Scholar 

  29. Q. Si, Quantum criticality and the Kondo lattice, in Understanding quantum phase transitions, L.D. Carr ed., CRC Press, U.S.A. (2010), arXiv:1012.5440 [INSPIRE].

    Google Scholar 

  30. P. Gegenwart, Q. Si and F. Steglich, Quantum criticality in heavy-fermion metals, Nature Physics 4 (2008) 186 [arXiv:0712.2045].

    Article  ADS  Google Scholar 

  31. I. Affleck, N. Laflorencie and E.S. Sorensen, Entanglement entropy in quantum impurity systems and systems with boundaries, J. Phys. A 42 (2009) 4009 [arXiv:0906.1809].

    MathSciNet  MATH  Google Scholar 

  32. F.B. Anders and A. Schiller, Spin precession and real-time dynamics in the Kondo model: time-dependent numerical renormalization-group study, Phys. Rev. B 74 (2006) 245113 [cond-mat/0604517].

    Article  ADS  Google Scholar 

  33. C. Latta et al., Quantum quench of Kondo correlations in optical absorption, Nature 474 (2011) 627 [arXiv:1102.3982].

    Article  Google Scholar 

  34. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  35. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. S. Kachru, A. Karch and S. Yaida, Holographic lattices, dimers and glasses, Phys. Rev. D 81 (2010) 026007 [arXiv:0909.2639] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  38. S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].

    Article  ADS  Google Scholar 

  39. S. Kachru, A. Karch and S. Yaida, Adventures in holographic dimer models, New J. Phys. 13 (2011) 035004 [arXiv:1009.3268] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Sachdev, Strange metals and the AdS/CFT correspondence, J. Stat. Mech. 1011 (2010) P11022 [arXiv:1010.0682] [INSPIRE].

    Article  Google Scholar 

  41. W. Mueck, The Polyakov loop of anti-symmetric representations as a quantum impurity model, Phys. Rev. D 83 (2011) 066006 [Erratum ibid. D 84 (2011) 129903] [arXiv:1012.1973] [INSPIRE].

  42. A. Faraggi and L.A. Pando Zayas, The spectrum of excitations of holographic wIlson loops, JHEP 05 (2011) 018 [arXiv:1101.5145] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. K. Jensen, S. Kachru, A. Karch, J. Polchinski and E. Silverstein, Towards a holographic marginal Fermi liquid, Phys. Rev. D 84 (2011) 126002 [arXiv:1105.1772] [INSPIRE].

    ADS  Google Scholar 

  44. N. Karaiskos, K. Sfetsos and E. Tsatis, Brane embeddings in sphere submanifolds, Class. Quant. Grav. 29 (2012) 025011 [arXiv:1106.1200] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. S. Harrison, S. Kachru and G. Torroba, A maximally supersymmetric Kondo model, Class. Quant. Grav. 29 (2012) 194005 [arXiv:1110.5325] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. P. Benincasa and A.V. Ramallo, Fermionic impurities in Chern-Simons-matter theories, JHEP 02 (2012) 076 [arXiv:1112.4669] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. A. Faraggi, W. Mueck and L.A. Pando Zayas, One-loop effective action of the holographic antisymmetric Wilson loop, Phys. Rev. D 85 (2012) 106015 [arXiv:1112.5028] [INSPIRE].

    ADS  Google Scholar 

  48. P. Benincasa and A.V. Ramallo, Holographic Kondo model in various dimensions, JHEP 06 (2012) 133 [arXiv:1204.6290] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. G. Itsios, K. Sfetsos and D. Zoakos, Fermionic impurities in the unquenched ABJM, JHEP 01 (2013) 038 [arXiv:1209.6617] [INSPIRE].

    Article  ADS  Google Scholar 

  50. H. Matsueda, Multiscale entanglement renormalization ansatz for Kondo problem, arXiv:1208.2872 [INSPIRE].

  51. B. Swingle, Entanglement renormalization and holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].

    ADS  Google Scholar 

  52. B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].

  53. T. Senthil, S. Sachdev and M. Vojta, Fractionalized Fermi liquids, Phys. Rev. Lett. 90 (2003) 216403 [cond-mat/0209144].

    Article  ADS  Google Scholar 

  54. T. Senthil, M. Vojta and S. Sachdev, Weak magnetism and non-Fermi liquids near heavy-fermion critical points, Phys. Rev. B 69 (2004) 035111 [cond-mat/0305193].

    Article  ADS  Google Scholar 

  55. K. Skenderis and M. Taylor, Branes in AdS and pp wave space-times, JHEP 06 (2002) 025 [hep-th/0204054] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J.A. Harvey and A.B. Royston, Localized modes at a D-brane-O-plane intersection and heterotic Alice atrings, JHEP 04 (2008) 018 [arXiv:0709.1482] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  57. E.I. Buchbinder, J. Gomis and F. Passerini, Holographic gauge theories in background fields and surface operators, JHEP 12 (2007) 101 [arXiv:0710.5170] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. J.A. Harvey and A.B. Royston, Gauge/gravity duality with a chiral N = (0, 8) string defect, JHEP 08 (2008) 006 [arXiv:0804.2854] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. J. Pawelczyk and S.-J. Rey, Ramond-Ramond flux stabilization of D-branes, Phys. Lett. B 493 (2000) 395 [hep-th/0007154] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. J. Camino, A. Paredes and A. Ramallo, Stable wrapped branes, JHEP 05 (2001) 011 [hep-th/0104082] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  61. S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP 05 (2006) 037 [hep-th/0603208] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. J. Gomis and F. Passerini, Holographic Wilson loops, JHEP 08 (2006) 074 [hep-th/0604007] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  63. S. Gukov, E. Martinec, G.W. Moore and A. Strominger, Chern-Simons gauge theory and the AdS 3 /CFT 2 correspondence, hep-th/0403225 [INSPIRE].

  64. P. Kraus and F. Larsen, Partition functions and elliptic genera from supergravity, JHEP 01 (2007) 002 [hep-th/0607138] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  65. P. Kraus, Lectures on black holes and the AdS 3 /CFT 2 correspondence, Lect. Notes Phys. 755 (2008) 193 [hep-th/0609074] [INSPIRE].

    ADS  MATH  Google Scholar 

  66. K. Jensen, Chiral anomalies and AdS/CMT in two dimensions, JHEP 01 (2011) 109 [arXiv:1012.4831] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. T. Andrade, J.I. Jottar and R.G. Leigh, Boundary conditions and unitarity: the Maxwell-Chern-Simons system in AdS 3 /CFT 2, JHEP 05 (2012) 071 [arXiv:1111.5054] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  68. E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].

  69. M. Berkooz, A. Sever and A. Shomer, ’Double tracedeformations, boundary conditions and space-time singularities, JHEP 05 (2002) 034 [hep-th/0112264] [INSPIRE].

    Article  ADS  Google Scholar 

  70. T. Faulkner, G.T. Horowitz and M.M. Roberts, Holographic quantum criticality from multi-trace deformations, JHEP 04 (2011) 051 [arXiv:1008.1581] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  71. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  72. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. P. Di Francesco, P. Mathieu, and D. Senechal, Conformal field theory, Springer-Verlag New York Inc., U.S.A. (1997).

    Book  MATH  Google Scholar 

  74. G. Felder, J. Fröhlich, J. Fuchs and C. Schweigert, Conformal boundary conditions and three-dimensional topological field theory, Phys. Rev. Lett. 84 (2000) 1659 [hep-th/9909140] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. C. Bachas and M. Gaberdiel, Loop operators and the Kondo problem, JHEP 11 (2004) 065 [hep-th/0411067] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  76. A. Alekseev and S. Monnier, Quantization of Wilson loops in Wess-Zumino-Witten models, JHEP 08 (2007) 039 [hep-th/0702174] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. S. Monnier, Kondo flow invariants, twisted k-theory and Ramond-Ramond charges, JHEP 06 (2008) 022 [arXiv:0803.1565] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  78. P. Zinn-Justin and N. Andrei, The generalized multi-channel Kondo model: Thermodynamics and fusion equations, Nucl. Phys. B 528 (1998) 648 [cond-mat/9801158].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. A. Jerez, N. Andrei and G. Zaránd, Solution of the multichannel Coqblin-Schrieffer impurity model and application to multilevel systems, Phys. Rev. B 58 (1998) 3814 [cond-mat/9803137].

    Article  ADS  Google Scholar 

  80. D. Bensimon, A. Jerez, and M. Lavagna, Intermediate coupling fixed point study in the overscreened regime of generalized multichannel SU(N) Kondo models, Phys. Rev. B73 (2006) 224445 [cond-mat/0601144].

    Article  ADS  Google Scholar 

  81. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  84. N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02 (2005) 010 [hep-th/0501109] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  85. J. Gomis and F. Passerini, Wilson loops as D3-branes, JHEP 01 (2007) 097 [hep-th/0612022] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  86. E. Gava, K. Narain and M. Sarmadi, On the bound states of p-branes and (p + 2)-branes, Nucl. Phys. B 504 (1997) 214 [hep-th/9704006] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  87. M. Aganagic, R. Gopakumar, S. Minwalla and A. Strominger, Unstable solitons in noncommutative gauge theory, JHEP 04 (2001) 001 [hep-th/0009142] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  88. J. Polchinski, String theory. Vol. 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).

    Book  MATH  Google Scholar 

  89. E. Pomoni and L. Rastelli, Large-N field theory and AdS tachyons, JHEP 04 (2009) 020 [arXiv:0805.2261] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  90. E. Pomoni and L. Rastelli, Intersecting flavor branes, JHEP 10 (2012) 171 [arXiv:1002.0006] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  91. D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov, Conformality lost, Phys. Rev. D 80 (2009) 125005 [arXiv:0905.4752] [INSPIRE].

    ADS  MATH  Google Scholar 

  92. K. Jensen, A. Karch, D.T. Son and E.G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless transitions, Phys. Rev. Lett. 105 (2010) 041601 [arXiv:1002.3159] [INSPIRE].

    Article  ADS  Google Scholar 

  93. D. Kutasov, J. Lin and A. Parnachev, Conformal phase transitions at weak and strong coupling, Nucl. Phys. B 858 (2012) 155 [arXiv:1107.2324] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  94. N. Iqbal, H. Liu and M. Mezei, Quantum phase transitions in semi-local quantum liquids, arXiv:1108.0425 [INSPIRE].

  95. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  96. T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  97. R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys. B 787 (2007) 98 [hep-th/0702155] [INSPIRE].

    Article  ADS  Google Scholar 

  98. O. Bergman, S. Seki and J. Sonnenschein, Quark mass and condensate in HQCD, JHEP 12 (2007) 037 [arXiv:0708.2839] [INSPIRE].

    Article  ADS  Google Scholar 

  99. A. Dhar and P. Nag, Sakai-Sugimoto model, tachyon condensation and chiral symmetry breaking, JHEP 01 (2008) 055 [arXiv:0708.3233] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  100. D. Marolf and S.F. Ross, Boundary conditions and new dualities: vector fields in AdS/CFT, JHEP 11 (2006) 085 [hep-th/0606113] [INSPIRE].

    Article  ADS  Google Scholar 

  101. A. Castro, D. Grumiller, F. Larsen and R. McNees, Holographic description of AdS 2 black holes, JHEP 11 (2008) 052 [arXiv:0809.4264] [INSPIRE].

    Article  ADS  Google Scholar 

  102. I. Papadimitriou, Multi-trace deformations in AdS/CFT: exploring the vacuum structure of the deformed CFT, JHEP 05 (2007) 075 [hep-th/0703152] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  103. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  104. S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [INSPIRE].

    ADS  Google Scholar 

  105. G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [INSPIRE].

    Article  ADS  Google Scholar 

  106. J.L. Davis, M. Gutperle, P. Kraus and I. Sachs, Stringy NJLS and Gross-Neveu models at finite density and temperature, JHEP 10 (2007) 049 [arXiv:0708.0589] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  107. D. Nickel and D.T. Son, Deconstructing holographic liquids, New J. Phys. 13 (2011) 075010 [arXiv:1009.3094] [INSPIRE].

    Article  ADS  Google Scholar 

  108. K. Hashimoto and N. Iizuka, Impurities in holography and transport coefficients, arXiv:1207.4643 [INSPIRE].

  109. T. Ishii and S.-J. Sin, Impurity effect in a holographic superconductor, JHEP 04 (2013) 128 [arXiv:1211.1798] [INSPIRE].

    Article  ADS  Google Scholar 

  110. D. Freedman, S. Gubser, K. Pilch and N. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  111. M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  112. A. Green, An introduction to gauge gravity duality and its application in condensed matter, Contemp. Phys. 54 (2013) 33 [arXiv:1304.5908] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy O’Bannon.

Additional information

ArXiv ePrint: 1310.3271

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdmenger, J., Hoyos, C., O’Bannon, A. et al. A holographic model of the Kondo effect. J. High Energ. Phys. 2013, 86 (2013). https://doi.org/10.1007/JHEP12(2013)086

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)086

Keywords

Navigation