Skip to main content
Log in

Entanglement temperature and entanglement entropy of excited states

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We derive a general relation between the ground state entanglement Hamiltonian and the physical stress tensor within the path integral formalism. For spherical entangling surfaces in a CFT, we reproduce the local ground state entanglement Hamiltonian derived by Casini, Huerta and Myers. The resulting reduced density matrix can be characterized by a spatially varying “entanglement temperature”. Using the entanglement Hamiltonian, we calculate the first order change in the entanglement entropy due to changes in conserved charges of the ground state, and find a local first law-like relation for the entanglement entropy. Our approach provides a field theory derivation and generalization of recent results obtained by holographic techniques. However, we note a discrepancy between our field theoretically derived results for the entanglement entropy of excited states with a non-uniform energy density and current holographic results in the literature. Finally, we give a CFT derivation of a set of constraint equations obeyed by the entanglement entropy of excited states in any dimension. Previously, these equations were derived in the context of holography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  2. H.C. Jiang, Z. Wang and L. Balents, Identifying topological order by entanglement entropy, Nature Phys. 8 (2012) 902 [arXiv:1205.4289] [INSPIRE].

    Article  ADS  Google Scholar 

  3. H. Li and F. Haldane, Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states, Phys. Rev. Lett. 101 (2008) 010504 [arXiv:0805.0332] [INSPIRE].

    Article  ADS  Google Scholar 

  4. A.M. Läuchli, E.J. Bergholtz, J. Suorsa and M. Haque, Disentangling entanglement spectra of fractional quantum Hall states on torus geometries, Phys. Rev. Lett. 104 (2010) 156404 [arXiv:0911.5477].

    Article  ADS  Google Scholar 

  5. A. Chandran, M. Hermanns, N. Regnault and B.A. Bernevig, Bulk-edge correspondence in entanglement spectra, Phys. Rev. B 84 (2011) 205136 [arXiv:1102.2218].

    Article  ADS  Google Scholar 

  6. X.-L. Qi, H. Katsura and A.W.W. Ludwig, General relationship between the entanglement spectrum and the edge state spectrum of topological quantum states, Phys. Rev. Lett. 108 (2012) 196402 [arXiv:1103.5437].

    Article  ADS  Google Scholar 

  7. A.M. Turner, Y. Zhang and A. Vishwanath, Entanglement and inversion symmetry in topological insulators, Phys. Rev. B 82 (2010) 241102.

    Article  ADS  Google Scholar 

  8. L. Fidkowski, T.S. Jackson and I. Klich, Model characterization of gapless edge modes of topological insulators using intermediate Brillouin-zone functions, Phys. Rev. Lett. 107 (2011) 036601 [arXiv:1101.0320].

    Article  ADS  Google Scholar 

  9. J.J. Bisognano and E.H. Wichmann, On the duality condition for a Hermitian scalar field, J. Math. Phys. 16 (1975) 985 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. J.J. Bisognano and E.H. Wichmann, On the duality condition for quantum fields, J. Math. Phys. 17 (1976) 303 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. W.G. Unruh and R.M. Wald, What happens when an accelerating observer detects a Rindler particle, Phys. Rev. D 29 (1984) 1047 [INSPIRE].

    ADS  Google Scholar 

  14. M. Nozaki, T. Numasawa and T. Takayanagi, Holographic local quenches and entanglement density, JHEP 05 (2013) 080 [arXiv:1302.5703] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of entanglement entropy from Einstein equation, Phys. Rev. D 88 (2013) 026012 [arXiv:1304.7100] [INSPIRE].

    ADS  Google Scholar 

  16. J. Bhattacharya and T. Takayanagi, Entropic counterpart of perturbative Einstein equation, JHEP 10 (2013) 219 [arXiv:1308.3792] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. E. Bianchi, Horizon entanglement entropy and universality of the graviton coupling, arXiv:1211.0522 [INSPIRE].

  18. J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, Thermodynamical property of entanglement entropy for excited states, Phys. Rev. Lett. 110 (2013) 091602 [arXiv:1212.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  19. W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].

    ADS  Google Scholar 

  20. L. Susskind and J. Lindesay, An introduction to black holes, information and the string theory revolution: the holographic universe, World Scientific, Hackensack U.S.A. (2005) [INSPIRE].

  21. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [INSPIRE].

  22. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  23. F. Larsen and F. Wilczek, Geometric entropy, wave functionals and fermions, Annals Phys. 243 (1995) 280 [hep-th/9408089] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic calculations of Rényi entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  25. M.I. Berganza, F.C. Alcaraz and G. Sierra, Entanglement of excited states in critical spin chains, J. Stat. Mech. (2012) P01016 [arXiv:1109.5673] [INSPIRE].

  26. F.C. Alcaraz, M.I. Berganza and G. Sierra, Entanglement of low-energy excitations in conformal field theory, Phys. Rev. Lett. 106 (2011) 201601 [arXiv:1101.2881] [INSPIRE].

    Article  ADS  Google Scholar 

  27. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. D. Allahbakhshi, M. Alishahiha and A. Naseh, Entanglement thermodynamics, JHEP 08 (2013) 102 [arXiv:1305.2728] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  30. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math . Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  31. N. Lashkari, M.B. McDermott and M. van Raamsdonk, Gravitational dynamics from entanglementthermodynamics”, arXiv:1308.3716 [INSPIRE].

  32. B. Swingle, Structure of entanglement in regulated Lorentz invariant field theories, arXiv:1304.6402 [INSPIRE].

  33. A. Bhattacharyya and A. Sinha, Entanglement entropy from the holographic stress tensor, Class. Quant. Grav. 30 (2013) 235032 [arXiv:1303.1884] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. J.L. Cardy, Conformal invariance and statistical mechanics, in Les Houches, Session XLIX. Champs, Cordes et Phénomènes Critiques: Fields, Strings and Critical Phenomena, E. Brézin and J. Zinn-Justin eds., Elsevier Science Publishers (1988), pp. 169–245.

  35. E. Benedict and S.-Y. Pi, Entanglement entropy of nontrivial states, Annals Phys. 245 (1996) 209 [hep-th/9505121] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Wong.

Additional information

ArXiv ePrint: 1305.3291

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, G., Klich, I., Zayas, L.A.P. et al. Entanglement temperature and entanglement entropy of excited states. J. High Energ. Phys. 2013, 20 (2013). https://doi.org/10.1007/JHEP12(2013)020

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)020

Keywords

Navigation