Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Large-N transitions of the connectivity index
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Entanglement entropy, dualities, and deconfinement in gauge theories

28 August 2018

Mohamed M. Anber & Benjamin J. Kolligs

Entanglement entropy and the large N expansion of two-dimensional Yang-Mills theory

28 April 2020

William Donnelly, Sydney Timmerman & Nicolás Valdés-Meller

Topological pseudo entropy

02 September 2021

Tatsuma Nishioka, Tadashi Takayanagi & Yusuke Taki

c-theorem of the entanglement entropy

27 November 2018

Chanyong Park, Daeho Ro & Jung Hun Lee

Interacting CFTs for all couplings: thermal versus entanglement entropy at large N

20 October 2022

S. Grable

Effects of non-conformal boundary on entanglement entropy

23 October 2020

Andrew Loveridge

Entanglement and symmetry resolution in two dimensional free quantum field theories

17 August 2020

Sara Murciano, Giuseppe Di Giulio & Pasquale Calabrese

On the entanglement entropy of Maxwell theory: a condensed matter perspective

17 December 2018

Michael Pretko

Effective entropy of quantum fields coupled with gravity

08 October 2020

Xi Dong, Xiao-Liang Qi, … Zhenbin Yang

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 12 February 2015

Large-N transitions of the connectivity index

  • Francesco Aprile1 &
  • Vasilis Niarchos1 

Journal of High Energy Physics volume 2015, Article number: 83 (2015) Cite this article

  • 273 Accesses

  • 6 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

The connectivity index, defined as the number of decoupled components of a separable quantum system, can change under deformations of the Hamiltonian or during the dynamical change of the system under renormalization group flow. Such changes signal a rearrangement of correlations of different degrees of freedom across spacetime and field theory space. In this paper we quantify such processes by studying the behavior of entanglement entropy in a specific example: the RG flow in the Coulomb branch of large-N superconformal field theories. We find evidence that the transition from the non-separable phase of the Higgsed gauge theory in the UV to the separable phase of deformed decoupled CFTs in the IR exhibits sharp features in the middle of the RG flow in the large-N limit. The entanglement entropy on a sphere with radius ℓ exhibits the formation of a separatrix on the co-dimension-two Ryu-Takayanagi surface in multi-centered brane geometries above a critical value of ℓ. We discuss how other measures of entanglement and separability based on the relative quantum entropy and quantum mutual information might detect such transitions between non-separable and separable phases and how they would help describe some of the key properties of the IR physics of such flows.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009)504005 [arXiv:0905.4013] [INSPIRE].

    MathSciNet  Google Scholar 

  3. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. O. Aharony, A.B. Clark and A. Karch, The CFT/AdS correspondence, massive gravitons and a connectivity index conjecture, Phys. Rev. D 74 (2006) 086006 [hep-th/0608089] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. E. Kiritsis, Product CFTs, gravitational cloning, massive gravitons and the space of gravitational duals, JHEP 11 (2006) 049 [hep-th/0608088] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. K.A. Intriligator, Maximally supersymmetric RG flows and AdS duality, Nucl. Phys. B 580 (2000) 99 [hep-th/9909082] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. M.S. Costa, Absorption by double centered D3-branes and the Coulomb branch of N = 4 SYM theory, JHEP 05 (2000) 041 [hep-th/9912073] [INSPIRE].

    Article  ADS  Google Scholar 

  8. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. T. Nishioka and T. Takayanagi, AdS Bubbles, Entropy and Closed String Tachyons, JHEP 01 (2007) 090 [hep-th/0611035] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. M.M. Wilde, Quantum Information Theory, Cambridge University Press, 2013, pg. 669, arXiv:1106.1445.

  12. S.A. Hartnoll and R. Mahajan, Holographic mutual information and distinguishability of Wilson loop and defect operators, arXiv:1407.8191 [INSPIRE].

  13. A. Mollabashi, N. Shiba and T. Takayanagi, Entanglement between Two Interacting CFTs and Generalized Holographic Entanglement Entropy, JHEP 04 (2014) 185 [arXiv:1403.1393] [INSPIRE].

    Article  ADS  Google Scholar 

  14. T. Morita and V. Niarchos, F-theorem, duality and SUSY breaking in one-adjoint Chern-Simons-Matter theories, Nucl. Phys. B 858 (2012) 84 [arXiv:1108.4963] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. E. Kiritsis and V. Niarchos, Interacting String Multi-verses and Holographic Instabilities of Massive Gravity, Nucl. Phys. B 812 (2009) 488 [arXiv:0808.3410] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  18. P. Kraus, F. Larsen and S.P. Trivedi, The Coulomb branch of gauge theory from rotating branes, JHEP 03 (1999) 003 [hep-th/9811120] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. K. Skenderis and M. Taylor, Kaluza-Klein holography, JHEP 05 (2006) 057 [hep-th/0603016] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. M.S. Costa, A Test of the AdS/CFT duality on the Coulomb branch, Phys. Lett. B 482 (2000)287 [Erratum ibid. B 489 (2000) 439] [hep-th/0003289] [INSPIRE].

  22. S. Dimopoulos, S. Kachru, N. Kaloper, A.E. Lawrence and E. Silverstein, Small numbers from tunneling between brane throats, Phys. Rev. D 64 (2001) 121702 [hep-th/0104239] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  23. S. Dimopoulos, S. Kachru, N. Kaloper, A.E. Lawrence and E. Silverstein, Generating small numbers by tunneling in multithroat compactifications, Int. J. Mod. Phys. A 19 (2004) 2657 [hep-th/0106128] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MATH  MathSciNet  Google Scholar 

  27. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and chi SB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. J.A. Minahan and N.P. Warner, Quark potentials in the Higgs phase of large-N supersymmetric Yang-Mills theories, JHEP 06 (1998) 005 [hep-th/9805104] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Lang, Complex analysis, Springer-Verlag, 4th edition, 1999.

  30. H. Liu and M. Mezei, Probing renormalization group flows using entanglement entropy, JHEP 01 (2014) 098 [arXiv:1309.6935] [INSPIRE].

    Article  ADS  Google Scholar 

  31. T. Albash and C.V. Johnson, Holographic Entanglement Entropy and Renormalization Group Flow, JHEP 02 (2012) 095 [arXiv:1110.1074] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].

  33. M. Berkooz, A. Sever and A. Shomer, ‘Double trace’ deformations, boundary conditions and space-time singularities, JHEP 05 (2002) 034 [hep-th/0112264] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. T. Hertog and G.T. Horowitz, Designer gravity and field theory effective potentials, Phys. Rev. Lett. 94 (2005) 221301 [hep-th/0412169] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. E. Kiritsis and V. Niarchos, Josephson Junctions and AdS/CFT Networks, JHEP 07 (2011) 112 [Erratum ibid. 1110 (2011) 095] [arXiv:1105.6100] [INSPIRE].

  36. H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004)025 [hep-th/0409174] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Furukawa and Y.B. Kim, Entanglement entropy between two coupled Tomonaga-Luttinger liquids, Phys. Rev. B 83 (2011) 085112 [arXiv:1009.3016] [INSPIRE].

    Article  ADS  Google Scholar 

  38. C. Xu, Entanglement Entropy of Coupled Conformal Field Theories and Fermi Liquids, Phys. Rev. B 84 (2011) 125119 [arXiv:1102.5345] [INSPIRE].

    Article  ADS  Google Scholar 

  39. X. Chen and E. Fradkin, Quantum Entanglement and Thermal Reduced Density Matrices in Fermion and Spin Systems on Ladders, J. Stat. Mech. 2013 (2013) P08013 [arXiv:1305.6538] [INSPIRE].

    MathSciNet  Google Scholar 

  40. R. Lundgren, Y. Fuji, S. Furukawa and M. Oshikawa, Entanglement spectra between coupled Tomonaga-Luttinger liquids: applications to ladder systems and topological phases, Phys. Rev. B 88 (2013) 245137 [arXiv:1310.0829].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Crete Center for Theoretical Physics and Crete Center for Quantum Complexity and Nanotechnology, Department of Physics, University of Crete, Heraklion, 71303, Greece

    Francesco Aprile & Vasilis Niarchos

Authors
  1. Francesco Aprile
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Vasilis Niarchos
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Francesco Aprile.

Additional information

ArXiv ePrint: 1410.7773

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aprile, F., Niarchos, V. Large-N transitions of the connectivity index. J. High Energ. Phys. 2015, 83 (2015). https://doi.org/10.1007/JHEP02(2015)083

Download citation

  • Received: 10 November 2014

  • Revised: 30 December 2014

  • Accepted: 06 January 2015

  • Published: 12 February 2015

  • DOI: https://doi.org/10.1007/JHEP02(2015)083

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • D-branes
  • 1/N Expansion
  • Black Holes
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.