Skip to main content

Phenomenology of a very light scalar (100 MeV < m h < 10 GeV) mixing with the SM Higgs

Abstract

In this paper we investigate the phenomenology of a very light scalar, h, with mass 100 MeV < m h < 10 GeV, mixing with the SM Higgs. As a benchmark model we take the real singlet scalar extension of the SM. We point out apparently unresolved uncertainties in the branching ratios and lifetime of h in a crucial region of parameter space for LHC phenomenology. Bounds from LEP, meson decays and fixed target experiments are reviewed. We also examine prospects at the LHC. For m h m B the dominant production mechanism is via meson decay; our main result is the calculation of the differential p T spectrum of h scalars originating from B mesons and the subsequent prediction of up to thousands of moderate (triggerable) p T displaced dimuons possibly hiding in the existing dataset at ATLAS/CMS or at LHCb. We also demonstrate that the subdominant V h production channel has the best sensitivity for m h m B and that future bounds in this region could conceivably compete with those of LEP.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  4. R. Hempfling, The Next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].

    ADS  Article  Google Scholar 

  5. K.A. Meissner and H. Nicolai, Conformal Symmetry and the Standard Model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  6. W.-F. Chang, J.N. Ng and J.M. Wu, Shadow Higgs from a scale-invariant hidden U(1)(s) model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].

    ADS  Google Scholar 

  7. R. Foot, A. Kobakhidze and R.R. Volkas, Electroweak Higgs as a pseudo-Goldstone boson of broken scale invariance, Phys. Lett. B 655 (2007) 156 [arXiv:0704.1165] [INSPIRE].

    ADS  Article  Google Scholar 

  8. R. Foot, A. Kobakhidze, K. McDonald and R. Volkas, Neutrino mass in radiatively-broken scale-invariant models, Phys. Rev. D 76 (2007) 075014 [arXiv:0706.1829] [INSPIRE].

    ADS  Google Scholar 

  9. R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A Solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].

    ADS  Google Scholar 

  10. S. Iso, N. Okada and Y. Orikasa, Classically conformal B-L extended Standard Model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].

    ADS  Article  Google Scholar 

  11. S. Iso, N. Okada and Y. Orikasa, The minimal B-L model naturally realized at TeV scale, Phys. Rev. D 80 (2009) 115007 [arXiv:0909.0128] [INSPIRE].

    ADS  Google Scholar 

  12. M. Holthausen, M. Lindner and M.A. Schmidt, Radiative Symmetry Breaking of the Minimal Left-Right Symmetric Model, Phys. Rev. D 82 (2010) 055002 [arXiv:0911.0710] [INSPIRE].

    ADS  Google Scholar 

  13. R. Foot, A. Kobakhidze and R.R. Volkas, Stable mass hierarchies and dark matter from hidden sectors in the scale-invariant standard model, Phys. Rev. D 82 (2010) 035005 [arXiv:1006.0131] [INSPIRE].

    ADS  Google Scholar 

  14. L. Alexander-Nunneley and A. Pilaftsis, The Minimal Scale Invariant Extension of the Standard Model, JHEP 09 (2010) 021 [arXiv:1006.5916] [INSPIRE].

    ADS  Article  Google Scholar 

  15. K. Ishiwata, Dark Matter in Classically Scale-Invariant Two Singlets Standard Model, Phys. Lett. B 710 (2012) 134 [arXiv:1112.2696] [INSPIRE].

    ADS  Article  Google Scholar 

  16. J.S. Lee and A. Pilaftsis, Radiative Corrections to Scalar Masses and Mixing in a Scale Invariant Two Higgs Doublet Model, Phys. Rev. D 86 (2012) 035004 [arXiv:1201.4891] [INSPIRE].

    ADS  Google Scholar 

  17. N. Okada and Y. Orikasa, Dark matter in the classically conformal B-L model, Phys. Rev. D 85 (2012) 115006 [arXiv:1202.1405] [INSPIRE].

    ADS  Google Scholar 

  18. S. Iso and Y. Orikasa, TeV Scale B-L model with a flat Higgs potential at the Planck scalein view of the hierarchy problem —, PTEP 2013 (2013) 023B08 [arXiv:1210.2848] [INSPIRE].

  19. C. Englert, J. Jaeckel, V. Khoze and M. Spannowsky, Emergence of the Electroweak Scale through the Higgs Portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].

    ADS  Article  Google Scholar 

  20. M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical Naturalness and Dynamical Breaking of Classical Scale Invariance, arXiv:1304.7006 [INSPIRE].

  21. M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Dark Supersymmetry, Nucl. Phys. B 876 (2013) 201 [arXiv:1305.4182] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  22. T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].

    ADS  Google Scholar 

  23. I. Bars, P. Steinhardt and N. Turok, Local Conformal Symmetry in Physics and Cosmology, arXiv:1307.1848 [INSPIRE].

  24. M. Heikinheimo, A. Racioppi, M. Raidal and C. Spethmann, Twin Peak Higgs, Phys. Lett. B 726 (2013) 781 [arXiv:1307.7146] [INSPIRE].

    ADS  Article  Google Scholar 

  25. C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].

    ADS  Google Scholar 

  26. A. Farzinnia, H.-J. He and J. Ren, Natural Electroweak Symmetry Breaking from Scale Invariant Higgs Mechanism, Phys. Lett. B 727 (2013) 141 [arXiv:1308.0295] [INSPIRE].

    ADS  Article  Google Scholar 

  27. V.V. Khoze, Inflation and Dark Matter in the Higgs Portal of Classically Scale Invariant Standard Model, JHEP 11 (2013) 215 [arXiv:1308.6338] [INSPIRE].

    ADS  Article  Google Scholar 

  28. E. Gabrielli et al., Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter, Phys. Rev. D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].

    ADS  Google Scholar 

  29. O. Antipin, M. Mojaza and F. Sannino, Natural Conformal Extensions of the Standard Model, arXiv:1310.0957 [INSPIRE].

  30. R. Foot and A. Kobakhidze, Electroweak Scale Invariant Models with Small Cosmological Constant, arXiv:1112.0607 [INSPIRE].

  31. E. Gildener and S. Weinberg, Symmetry Breaking and Scalar Bosons, Phys. Rev. D 13 (1976) 3333 [INSPIRE].

    ADS  Google Scholar 

  32. R. Foot, A. Kobakhidze and R.R. Volkas, Cosmological constant in scale-invariant theories, Phys. Rev. D 84 (2011) 075010 [arXiv:1012.4848] [INSPIRE].

    ADS  Google Scholar 

  33. F. Bezrukov and D. Gorbunov, Light inflaton Hunters Guide, JHEP 05 (2010) 010 [arXiv:0912.0390] [INSPIRE].

    ADS  Article  Google Scholar 

  34. F. Bezrukov and D. Gorbunov, Light inflaton after LHC8 and WMAP9 results, JHEP 07 (2013) 140 [arXiv:1303.4395] [INSPIRE].

    ADS  Article  Google Scholar 

  35. S. Weinberg, Goldstone Bosons as Fractional Cosmic Neutrinos, Phys. Rev. Lett. 110 (2013) 241301 [arXiv:1305.1971] [INSPIRE].

    ADS  Article  Google Scholar 

  36. K. Cheung, W.-Y. Keung and T.-C. Yuan, Collider Signatures of Goldstone Bosons, Phys. Rev. D 89 (2014) 015007 [arXiv:1308.4235] [INSPIRE].

    ADS  Google Scholar 

  37. C. Garcia-Cely, A. Ibarra and E. Molinaro, Dark matter production from Goldstone boson interactions and implications for direct searches and dark radiation, JCAP 11 (2013) 061 [arXiv:1310.6256] [INSPIRE].

    ADS  Article  Google Scholar 

  38. M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].

    ADS  Article  Google Scholar 

  39. J.F. Gunion, S. Dawson, H.E. Haber and G.L. Kane, The Higgs Hunters Guide, Frontiers in Physics, Westview, Boulder, CO (1990) [later reprinted under the Frontiers in Physics series from Perseus Publishing in 2000].

  40. M. Voloshin, Once Again About the Role of Gluonic Mechanism in Interaction of Light Higgs Boson with Hadrons, Sov. J. Nucl. Phys. 44 (1986) 478 [INSPIRE].

    Google Scholar 

  41. B. Grinstein, L.J. Hall and L. Randall, Do B meson decays exclude a light Higgs?, Phys. Lett. B 211 (1988) 363 [INSPIRE].

    ADS  Article  Google Scholar 

  42. S. Raby and G.B. West, The Branching Ratio for a Light Higgs to Decay Into μ + μ Pairs, Phys. Rev. D 38 (1988) 3488 [INSPIRE].

    ADS  Google Scholar 

  43. E. Duchovni, E. Gross and G. Mikenberg, Motivation and technique for light Higgs boson search, Phys. Rev. D 39 (1989) 365 [INSPIRE].

    ADS  Google Scholar 

  44. S. Narison, Gluonia Enhancements of the Higgs Boson Hadronic Widths, Phys. Lett. B 228 (1989) 513 [INSPIRE].

    ADS  Article  Google Scholar 

  45. T.N. Truong and R. Willey, Branching Ratios for Decays of Light Higgs Bosons, Phys. Rev. D 40 (1989) 3635 [INSPIRE].

    ADS  Google Scholar 

  46. J.F. Donoghue, J. Gasser and H. Leutwyler, The Decay of a Light Higgs Boson, Nucl. Phys. B 343 (1990) 341 [INSPIRE].

    ADS  Article  Google Scholar 

  47. S. Bethke, Experimental tests of asymptotic freedom, Prog. Part. Nucl. Phys. 58 (2007) 351 [hep-ex/0606035] [INSPIRE].

    ADS  Article  Google Scholar 

  48. E. Gross and P. Yepes, SM Higgs boson hunting at LEP, Int. J. Mod. Phys. A 8 (1993) 407 [INSPIRE].

    ADS  Article  Google Scholar 

  49. L3 collaboration, M. Acciarri et al., Search for neutral Higgs boson production through the process e + e Z H0, Phys. Lett. B 385 (1996) 454 [INSPIRE].

    ADS  Article  Google Scholar 

  50. ALEPH collaboration, D. Buskulic et al., Search for a nonminimal Higgs boson produced in the reaction e + e hZ , Phys. Lett. B 313 (1993) 312 [INSPIRE].

    ADS  Article  Google Scholar 

  51. OPAL collaboration, G. Abbiendi et al., Search for invisibly decaying Higgs bosons in e+e− → Z0h0 production at \( \sqrt{s} \) = 183 GeV - 209-GeV, Phys. Lett. B 682 (2010) 381 [arXiv:0707.0373] [INSPIRE].

    ADS  Article  Google Scholar 

  52. LEP Higgs Working for Higgs boson searches, ALEPH, DELPHI, CERN-L3, OPAL collaborations, Searches for Invisible Higgs bosons : Preliminary combined results using LEP data collected at energies up to 209 GeV, LHWG-NOTE-2001-06 [ALEPH-2001-036] [DELPHI-2001-116] [L3-NOTE-2702] [OPAL-TN-694] (2001).

  53. OPAL collaboration, G. Abbiendi et al., Decay mode independent searches for new scalar bosons with the OPAL detector at LEP, Eur. Phys. J. C 27 (2003) 311 [hep-ex/0206022] [INSPIRE].

    ADS  Article  Google Scholar 

  54. ALEPH collaboration, D. Decamp et al., Searches for new particles in Z decays using the ALEPH detector, Phys. Rept. 216 (1992) 253 [INSPIRE].

    ADS  Article  Google Scholar 

  55. A. Sopczak, Status of Higgs hunting at the Z resonance and its prospects at LEP-200, Nucl. Phys. Proc. Suppl. C 37 (1995) 168.

    ADS  Article  Google Scholar 

  56. LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaborations, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

    ADS  Google Scholar 

  57. H. Leutwyler and M.A. Shifman, Light Higgs Particle in Decays of K and η Mesons, Nucl. Phys. B 343 (1990) 369 [INSPIRE].

    ADS  Article  Google Scholar 

  58. B. Batell, M. Pospelov and A. Ritz, Multi-lepton Signatures of a Hidden Sector in Rare B Decays, Phys. Rev. D 83 (2011) 054005 [arXiv:0911.4938] [INSPIRE].

    ADS  Google Scholar 

  59. P. Ball and R. Zwicky, New results on B → π, K, η decay formfactors from light-cone sum rules, Phys. Rev. D 71 (2005) 014015 [hep-ph/0406232] [INSPIRE].

    ADS  Google Scholar 

  60. NA48/2 collaboration, J. Batley et al., New measurement of the K ± → π± μ + μ decay, Phys. Lett. B 697 (2011) 107 [arXiv:1011.4817] [INSPIRE].

    ADS  Article  Google Scholar 

  61. S. Friot, D. Greynat and E. De Rafael, Rare kaon decays revisited, Phys. Lett. B 595 (2004) 301 [hep-ph/0404136] [INSPIRE].

    ADS  Article  Google Scholar 

  62. A. Dubnickova, S. Dubnicka, E. Goudzovski, V. Pervushin and M. Secansky, Kaon decay probe of the weak static interaction, Phys. Part. Nucl. Lett. 5 (2008) 76 [hep-ph/0611175] [INSPIRE].

    Article  Google Scholar 

  63. E. Goudzovski, private communication.

  64. BNL-E949 collaboration, A. Artamonov et al., Study of the decay K + → π+ν\( \overline{\nu} \) in the momentum region 140 < P π < 199 MeV/c, Phys. Rev. D 79 (2009) 092004 [arXiv:0903.0030] [INSPIRE].

    ADS  Google Scholar 

  65. E949, E787 collaborations, S. Adler et al., Measurement of the K + → π+νν branching ratio, Phys. Rev. D 77 (2008) 052003 [arXiv:0709.1000] [INSPIRE].

    ADS  Google Scholar 

  66. LHCb collaboration, Differential branching fraction and angular analysis of the B +K + μ + μ decay, JHEP 02 (2013) 105 [arXiv:1209.4284] [INSPIRE].

    Google Scholar 

  67. A. Ali, E. Lunghi, C. Greub and G. Hiller, Improved model independent analysis of semileptonic and radiative rare B decays, Phys. Rev. D 66 (2002) 034002 [hep-ph/0112300] [INSPIRE].

    ADS  Google Scholar 

  68. BELLE collaboration, J.-T. Wei et al., Measurement of the Differential Branching Fraction and Forward-Backword Asymmetry for BK (∗) + , Phys. Rev. Lett. 103 (2009) 171801 [arXiv:0904.0770] [INSPIRE].

    ADS  Article  Google Scholar 

  69. BaBar collaboration, B. Aubert et al., Direct CP, Lepton Flavor and Isospin Asymmetries in the Decays BK (∗) + , Phys. Rev. Lett. 102 (2009) 091803 [arXiv:0807.4119] [INSPIRE].

    ADS  Article  Google Scholar 

  70. BELLE collaboration, K.-F. Chen et al., Search for Bh(∗)ν\( \overline{\nu} \) decays at Belle, Phys. Rev. Lett. 99 (2007) 221802 [arXiv:0707.0138] [INSPIRE].

    ADS  Article  Google Scholar 

  71. BaBar collaboration, P. del Amo Sanchez et al., Search for the Rare Decay BKν\( \overline{n} \) u, Phys. Rev. D 82 (2010) 112002 [arXiv:1009.1529] [INSPIRE].

    ADS  Google Scholar 

  72. Belle collaboration, H. Hyun et al., Search for a Low Mass Particle Decaying into μ + μ in B 0K ∗0 X and B 0 → ρ0 X at Belle, Phys. Rev. Lett. 105 (2010) 091801 [arXiv:1005.1450] [INSPIRE].

    ADS  Article  Google Scholar 

  73. M. Freytsis, Z. Ligeti and J. Thaler, Constraining the Axion Portal with B → Kℓ + , Phys. Rev. D 81 (2010) 034001 [arXiv:0911.5355] [INSPIRE].

    ADS  Google Scholar 

  74. HyperCP collaboration, H. Park et al., Evidence for the decay Σ+ + μ , Phys. Rev. Lett. 94 (2005) 021801 [hep-ex/0501014] [INSPIRE].

    ADS  Article  Google Scholar 

  75. D. Gorbunov and V. Rubakov, On sgoldstino interpretation of HyperCP events, Phys. Rev. D 73 (2006) 035002 [hep-ph/0509147] [INSPIRE].

    ADS  Google Scholar 

  76. HyperCP collaboration, R. Burnstein et al., HyperCP: A High-rate spectrometer for the study of charged hyperon and kaon decays, Nucl. Instrum. Meth. A 541 (2005) 516 [hep-ex/0405034] [INSPIRE].

    ADS  Article  Google Scholar 

  77. BaBar collaboration, J. Lees et al., Search for di-muon decays of a low-mass Higgs boson in radiative decays of the \( \varUpsilon \)(1S), Phys. Rev. D 87 (2013) 031102 [arXiv:1210.0287] [INSPIRE].

    ADS  Google Scholar 

  78. BaBar collaboration, J. Lees et al., Search for a Low-Mass Scalar Higgs Boson Decaying to a Tau Pair in Single-Photon Decays of \( \varUpsilon \)(1S), Phys. Rev. D 88 (2013) 071102 [arXiv:1210.5669] [INSPIRE].

    ADS  Google Scholar 

  79. BaBar collaboration, J. Lees et al., Search for a light Higgs boson decaying to two gluons or ss-bar in the radiative decays of \( \varUpsilon \)(1S), Phys. Rev. D 88 (2013) 031701 [arXiv:1307.5306] [INSPIRE].

    ADS  Google Scholar 

  80. BaBar collaboration, P. del Amo Sanchez et al., Search for Production of Invisible Final States in Single-Photon Decays of \( \varUpsilon \)(1S), Phys. Rev. Lett. 107 (2011) 021804 [arXiv:1007.4646] [INSPIRE].

    ADS  Article  Google Scholar 

  81. D. McKeen, Constraining Light Bosons with Radiative \( \varUpsilon \)(1S) Decays, Phys. Rev. D 79 (2009) 015007 [arXiv:0809.4787] [INSPIRE].

    ADS  Google Scholar 

  82. CHARM collaboration, F. Bergsma et al., Search for Axion Like Particle Production in 400-GeV Proton - Copper Interactions, Phys. Lett. B 157 (1985) 458 [INSPIRE].

    ADS  Article  Google Scholar 

  83. WA66 collaboration, A.M. Cooper-Sarkar et al., Search for Heavy Neutrino Decays in the BEBC Beam Dump Experiment, Phys. Lett. B 160 (1985) 207 [INSPIRE].

    ADS  Article  Google Scholar 

  84. NA3 collaboration, J. Badier et al., Mass and Lifetime Limits on New Longlived Particles in 300-GeV/cπ Interactions, Z. Phys. C 31 (1986) 21.

    ADS  Google Scholar 

  85. G. Bernardi et al., Further limits on heavy neutrino couplings, Phys. Lett. B 203 (1988) 332 [INSPIRE].

    ADS  Article  Google Scholar 

  86. FMMF collaboration, E. Gallas et al., Search for neutral weakly interacting massive particles in the Fermilab Tevatron wide band neutrino beam, Phys. Rev. D 52 (1995) 6 [INSPIRE].

    ADS  Google Scholar 

  87. KTeV collaboration, J. Adams et al., Search for light gluinos via the spontaneous appearance of π+π pairs with an 800-GeV/c proton beam at Fermilab, Phys. Rev. Lett. 79 (1997) 4083 [hep-ex/9709028] [INSPIRE].

    ADS  Article  Google Scholar 

  88. B. Batell, M. Pospelov and A. Ritz, Exploring Portals to a Hidden Sector Through Fixed Targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].

    ADS  Google Scholar 

  89. R. Essig, R. Harnik, J. Kaplan and N. Toro, Discovering New Light States at Neutrino Experiments, Phys. Rev. D 82 (2010) 113008 [arXiv:1008.0636] [INSPIRE].

    ADS  Google Scholar 

  90. P. de Niverville, M. Pospelov and A. Ritz, Observing a light dark matter beam with neutrino experiments, Phys. Rev. D 84 (2011) 075020 [arXiv:1107.4580] [INSPIRE].

    ADS  Google Scholar 

  91. P. de Niverville, D. McKeen and A. Ritz, Signatures of sub-GeV dark matter beams at neutrino experiments, Phys. Rev. D 86 (2012) 035022 [arXiv:1205.3499] [INSPIRE].

    ADS  Google Scholar 

  92. C. Lourenco and H. Wohri, Heavy flavour hadro-production from fixed-target to collider energies, Phys. Rept. 433 (2006) 127 [hep-ph/0609101] [INSPIRE].

    ADS  Article  Google Scholar 

  93. ATLAS collaboration, Search for displaced muonic lepton jets from light Higgs boson decay in proton-proton collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Phys. Lett. B 721 (2013) 32 [arXiv:1210.0435] [INSPIRE].

    ADS  Google Scholar 

  94. ATLAS collaboration, A search for prompt lepton-jets in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Phys. Lett. B 719 (2013) 299 [arXiv:1212.5409] [INSPIRE].

    ADS  Google Scholar 

  95. CMS collaboration, Search for Light Resonances Decaying into Pairs of Muons as a Signal of New Physics, JHEP 07 (2011) 098 [arXiv:1106.2375] [INSPIRE].

    ADS  Google Scholar 

  96. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    ADS  Article  Google Scholar 

  97. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    ADS  Article  Google Scholar 

  98. CTEQ collaboration, H. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [INSPIRE].

    ADS  Article  Google Scholar 

  99. M. Cacciari, S. Frixione, N. Houdeau, M.L. Mangano, P. Nason et al., Theoretical predictions for charm and bottom production at the LHC, JHEP 10 (2012) 137 [arXiv:1205.6344] [INSPIRE].

    ADS  Article  Google Scholar 

  100. ATLAS collaboration, Measurement of the differential cross-section of B + meson production in pp collisions at \( \sqrt{s} \) = 7 TeV at ATLAS, JHEP 10 (2013) 042 [arXiv:1307.0126] [INSPIRE].

    ADS  Google Scholar 

  101. LHCb collaboration, Measurement of B meson production cross-sections in proton-proton collisions at \( \sqrt{s} \) = 7 TeV, JHEP 08 (2013) 117 [arXiv:1306.3663] [INSPIRE].

    Google Scholar 

  102. ATLAS collaboration, Muon Reconstruction Performance, ATLAS-CONF-2010-064 (2010).

  103. ATLAS collaboration, A Search for Light CP-Odd Higgs Bosons Decaying to μ + μ in ATLAS, ATLAS-CONF-2011-020 (2011).

  104. CMS collaboration, Search for a light pseudoscalar Higgs boson in the dimuon decay channel in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett. 109 (2012) 121801 [arXiv:1206.6326] [INSPIRE].

    ADS  Article  Google Scholar 

  105. ATLAS collaboration, Measurement of the production cross section of prompt J/ψ mesons in association with a W ± boson in pp collisions at \( \sqrt{s} \) = 7 TeV, ATLAS-CONF-2013-042 (2013).

  106. K. Schmidt-Hoberg, F. Staub and M.W. Winkler, Constraints on light mediators: confronting dark matter searches with B physics, Phys. Lett. B 727 (2013) 506 [arXiv:1310.6752] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jackson D. Clarke.

Additional information

ArXiv ePrint: 1310.8042

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Clarke, J.D., Foot, R. & Volkas, R.R. Phenomenology of a very light scalar (100 MeV < m h < 10 GeV) mixing with the SM Higgs. J. High Energ. Phys. 2014, 123 (2014). https://doi.org/10.1007/JHEP02(2014)123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2014)123

Keywords

  • Phenomenological Models
  • Hadronic Colliders