Skip to main content
Log in

Thermodynamic and Transport Properties of Argon/Helium Plasmas at Atmospheric Pressure

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Because of the importance of having reliable transport coefficients for argon/helium mixtures available, viscosities and thermal conductivities of such mixtures at atmospheric pressure have been recalculatedfor molar fractions of helium ranging from 0 to 1 in steps of 0.1 and for temperatures varying from 1000 to 20.000 K. We have found that the viscosities of Ar/He gas mixtures in the temperature range from 1000 to 10,000 K strongly depend on the values which are used to describe the interaction potentials between argon and helium atoms. For example, an anomalous behavior has been found, indicating higher values of the viscosity of Ar/He mixtures compared to those of pure argon or pure helium in a temperature range from 6000 to 10,000 K if one data set for Ar/He interatomic potentials is used. While this anomalous behavior disappears if other data sets are used. Our calculations of thermal conductivities of Ar/He plasmas have shown that the temperature dependences of thermal conductivities of mixtures are almost the samefor different sources of interatomic pote11tials between argon and helium atoms. An anomalous behavior has been found indicating higher values of the thermal conductivities of Ar/He mixtures compared to those of pure argon or pure helium in a temperature range Fom 11,000 to 15,000 K. regardless of which data set is used for Ar-He interatomic potentials. Calculating and analyzing the data of the thermal conductivities for molar fractions of helium Fom 90% to 100% in step changes of 1% indicates that this anomalous behavior is due to the contributions not only from heavy species but also from electrons and chemical reactions. The electron thermal conductivity, as well as the reactional thermal conductivity, decrease with increasing helium molar fractions from 90% to 100%. While the heavy particle thermal conductivity becomes higher with increasing helium molar fraction. The peak of the reactional conductivities will he reduced to 30% and shifted to lower temperatures (from 12,500 to 11,000 K) when the helium molar fractions increase from 92% to 99%. The data presented in this paper are considered to he the most reliable property data available for Ar/He mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Pateyron, M.-F. Eichinger, G. Delluc, and P. Fauchais, Plasma Chem. Plasma Process 12, 421 (1992).

    Article  CAS  Google Scholar 

  2. D. Apelian, “Materials synthesis: A new horizon for plasma processing,” Thermal Plasma Applications in Materials and Metallurgical Processing, N. El-Kaddah, ed. (The Minerals, Metals & Materials Society, 1992), p. 1.

    Google Scholar 

  3. P. Fauchais, J. F. Coudert, M. Vardelle, and A. Vardelle, “Diagnostics of thermal plasma jets,” Thermal Plasma Applications in Materials and Metallurgical Processing, N. El-Kaddah, ed. (The Minerals, Metals & Materials Society, 1992). p. 11.

    Google Scholar 

  4. J. Szekely and R. C. Westhoff, “Recent advances in the mathematical modelling of transport phenomena in plasma systems," Thermal Plasma Applications in Materials and Metallurgical Processing, N. El-Kaddah, ed. (The Minerals, Metals & Materials Society, 1992), p. 55.

    Google Scholar 

  5. E. Pfender, W. L. T. Chen, and R. Spores, “A new look at the thermal and gas dynamic characteristics of a plasma jet,” Proc. of the 1990 National Thermal Spray Conference, Long Beach, California, 1990, p. 1.

    Google Scholar 

  6. J. Aubreton and P. Fauchais, Rev. Phys. Appl. 18, 51 (1983).

    Article  CAS  Google Scholar 

  7. R. A. Aziz, P. W. Riley, U. Buck, G. Maneke, J. Schleusener, G. Scoles, and U. Valbusa J. Chem. Phys. 71, 2637 (1979).

    Article  CAS  Google Scholar 

  8. K. M. Smith, A. M. Rulis, G. Scoles, R. A. Aziz, and V. Nain, J. Chem. Phys. 67, 1 (1977).

    Article  Google Scholar 

  9. M. Keil, J. T. Slankas, and A. Kuppermann, J. Chem. Phys. 70, 482 (1979).

    Article  CAS  Google Scholar 

  10. J. J. Hurly, W. L. Taylor, and D. A. Menke, J. Chem. Phys. 94, 8282 (1991).

    Article  CAS  Google Scholar 

  11. W. L. Taylor, S. B. Wyrick, J. J. Hurly, and F. R. Meeks, J. Chem. Phys. 92, 6786 (1990).

    Article  CAS  Google Scholar 

  12. L. J. Danielson and M. Keil, J. Chem. Phys. 88, 851 (1988).

    Article  CAS  Google Scholar 

  13. P. J. Dunlop, H. L. Rabjohn, and C. M. Bignell, J. Chem. Phys. 86, 2922 (1987).

    Article  CAS  Google Scholar 

  14. F. A. Gianturco, M. Venanzi, and A. S. Dickinson, Mol. Phys. 65, 563 (1988).

    Article  CAS  Google Scholar 

  15. F. A. Gianturco, M. Venanzi, and A. S. Dickinson, Mol. Phys. 65, 585 (1988).

    Article  CAS  Google Scholar 

  16. H. Dinulescu, E. Pfender, and H. Wilhelmi, “Calculation of thermodynamic and transport properties of arc furnace plasmas,” Proc. of 5th International Symposium on Plasma Chemistry, Edinburgh, Scotland, 1981, Vol. 1, p. 138.

    CAS  Google Scholar 

  17. H. Wilhelmi, W. Lyhs, and E. Pfender, Plasma Chem. Plasma Process 4, 315 (1984).

    Article  CAS  Google Scholar 

  18. S. Paik and E. Pfender, Plasma Chem. Plasma Process 10, 291 (1990).

    Article  CAS  Google Scholar 

  19. W. L. T. Chen, P. C. Huang, J. Heberlein, and E. Pfender, “Thermodynamic and transport properties of thermal plasma with gas mixtures at atmospheric pressure,” Report, ERC for Plasma-Aided Manufacturing, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, April 1993.

    Google Scholar 

  20. I. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).

    Google Scholar 

  21. S. Chapman and T. G. Cowling, Mathematical Theory of Non-uniform Gases (Cambridge University Press. London, 1964).

    Google Scholar 

  22. R. S. Devoto, Phys. Fluids 9, 1230 (1966).

    Article  CAS  Google Scholar 

  23. R. S. Devoto, Phys. Fluids 10, 354 (1967).

    Article  CAS  Google Scholar 

  24. R. S. Devoto, Phys. Fluids 10, 2105 (1967).

    Article  CAS  Google Scholar 

  25. R. S. Devoto and C. P. Li, J. Plasma Phys. 2, 17 (1968).

    Article  CAS  Google Scholar 

  26. R. S. Devoto, Phys. Fluids 16, 616 (1973).

    Article  CAS  Google Scholar 

  27. M. Capitelli and R. S. Devoto, Phys. Fluids, 16, 1835 (1973).

    Article  CAS  Google Scholar 

  28. E. A. Mason and R. J. Munn, Phys. Fluids 10, 1827 (1967).

    Article  Google Scholar 

  29. E. Pfender, W. L. T. Chen, C.-P. Chiu, and J. Heberlein, “Studies of a turbulent argonhelium plasma jet,” 1991 National Thermal Spray Conference, Pittsburgh, Pennsylvania, May 1991.

    Google Scholar 

  30. E. Pfender, W. L. T. Chen, C.-P. Chiu, and J. Heberlein, “Properties of a turbulent argon-helium plasma jet,” Werkstofftechnologie in Wandel. H. Kern, ed. (Deutscher Verlag für Schweisstechnik, Düsseldorf, Germany, 1991), pp. 71–76.

    Google Scholar 

  31. W. L. T. Chen, J. Heberlein, and P. Pfender, “Temperature and velocity measurements in turbulent argon-helium plasma jets,” Proc. of lOth International Symposium on Plasma Chemistry, Bochum, Germany, August 1991, Vol. 1, pp. 1.2–12.

    Google Scholar 

  32. Ph. Roumillac, M. Vardelle, A. Vardelle, and P. Fauchais. in Thermal Spray Technology, New Ideas and Process (ASM Int., Ohio, 1989), p. 111.

    Google Scholar 

  33. C. R. Wilke, J. Chem. Phys. 18, 517 (1950).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DOE under Grant DOE/DE-FG02- 85ERI3433A009, and by NSF under Grant CDR-87-21545, Engineering Research Center for Plasma-Aided Manufacturing. The government has certain rights in this material. The support through the Minnesota Supercomputer Institute is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W.L.T., Heberlein, J., Pfender, E. et al. Thermodynamic and Transport Properties of Argon/Helium Plasmas at Atmospheric Pressure. Plasma Chem Plasma Process 15, 559–579 (1995). https://doi.org/10.1007/BF03651423

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03651423

Key Words

Navigation